Data
Filter results by:
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
774 runs0 likes0 downloads0 reach0 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
774 runs0 likes0 downloads0 reach0 impact
797 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes0 downloads0 reach0 impact
950 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
773 runs0 likes0 downloads0 reach0 impact
2000 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes0 downloads0 reach0 impact
250 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes0 downloads0 reach0 impact
8641 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes0 downloads0 reach0 impact
100 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes0 downloads0 reach0 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes0 downloads0 reach0 impact
250 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
772 runs0 likes0 downloads0 reach0 impact
2310 instances - 20 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
772 runs0 likes0 downloads0 reach0 impact
500 instances - 51 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. The specific type of software is unknown. Data comes from McCabe and Halstead features extractors of source code. These features were defined in…
772 runs0 likes0 downloads0 reach0 impact
161 instances - 40 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
772 runs0 likes0 downloads0 reach0 impact
214 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
772 runs0 likes0 downloads0 reach0 impact
194 instances - 33 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
771 runs0 likes0 downloads0 reach0 impact
500 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
771 runs0 likes0 downloads0 reach0 impact
468 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
770 runs0 likes0 downloads0 reach0 impact
100 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
769 runs0 likes0 downloads0 reach0 impact
252 instances - 15 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
769 runs0 likes0 downloads0 reach0 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
768 runs0 likes0 downloads0 reach0 impact
450 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
767 runs0 likes0 downloads0 reach0 impact
189 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
767 runs0 likes0 downloads0 reach0 impact
76 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
766 runs0 likes0 downloads0 reach0 impact
2000 instances - 217 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
766 runs0 likes0 downloads0 reach0 impact
100 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
766 runs0 likes0 downloads0 reach0 impact
55 instances - 3 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
765 runs0 likes0 downloads0 reach0 impact
145 instances - 95 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
765 runs0 likes0 downloads0 reach0 impact
5620 instances - 65 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
765 runs0 likes0 downloads0 reach0 impact
1728 instances - 7 features - 2 classes - 0 missing values
%-*- text -*- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a PROMISE data set made publicly available in order to encourage repeatable, verifiable, refutable,…
765 runs0 likes10 downloads10 reach15 impact
403 instances - 38 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
764 runs0 likes0 downloads0 reach0 impact
100 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
764 runs0 likes0 downloads0 reach0 impact
400 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
764 runs0 likes0 downloads0 reach0 impact
250 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
763 runs0 likes0 downloads0 reach0 impact
250 instances - 101 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
762 runs0 likes0 downloads0 reach0 impact
315 instances - 14 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
762 runs0 likes0 downloads0 reach0 impact
88 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
762 runs0 likes0 downloads0 reach0 impact
8192 instances - 33 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
761 runs0 likes0 downloads0 reach0 impact
8192 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
761 runs0 likes0 downloads0 reach0 impact
8192 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
760 runs0 likes0 downloads0 reach0 impact
6574 instances - 15 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
760 runs0 likes0 downloads0 reach0 impact
8192 instances - 22 features - 2 classes - 0 missing values
February 23, 1982 The 1982 annual meetings of the American Statistical Association (ASA) will be held August 16-19, 1982 in Cincinnati. At that meeting, the ASA Committee on Statistical Graphics plans…
759 runs0 likes0 downloads0 reach0 impact
209 instances - 9 features - 2 classes - 15 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
759 runs0 likes0 downloads0 reach0 impact
250 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
759 runs0 likes0 downloads0 reach0 impact
50 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
758 runs0 likes11 downloads11 reach15 impact
2000 instances - 77 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
758 runs0 likes0 downloads0 reach0 impact
500 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
757 runs0 likes0 downloads0 reach0 impact
400 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
756 runs0 likes0 downloads0 reach0 impact
310 instances - 9 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
756 runs0 likes8 downloads8 reach14 impact
121 instances - 30 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
755 runs0 likes0 downloads0 reach0 impact
250 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
755 runs0 likes0 downloads0 reach0 impact
54 instances - 8 features - 2 classes - 120 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
754 runs0 likes0 downloads0 reach0 impact
38 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
754 runs0 likes0 downloads0 reach0 impact
60 instances - 16 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
754 runs0 likes0 downloads0 reach0 impact
8844 instances - 57 features - 2 classes - 34843 missing values
SUMMARY: Data from an experiment on the affects of machine adjustments on the time to count bolts. Data appear as the STATS (Issue 10) Challenge. DATA: Submitted by W. Robert Stephenson, Iowa State…
754 runs0 likes0 downloads0 reach0 impact
40 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
753 runs0 likes0 downloads0 reach0 impact
508 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
753 runs0 likes0 downloads0 reach0 impact
8192 instances - 13 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
752 runs0 likes0 downloads0 reach0 impact
48 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
752 runs0 likes0 downloads0 reach0 impact
339 instances - 18 features - 2 classes - 225 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
751 runs0 likes0 downloads0 reach0 impact
475 instances - 4 features - 2 classes - 0 missing values
Schizophrenic Eye-Tracking Data in Rubin and Wu (1997) Biometrics. Yingnian Wu (wu@hustat.harvard.edu) [14/Oct/97] Information about the dataset CLASSTYPE: nominal CLASSINDEX: last
748 runs0 likes0 downloads0 reach0 impact
340 instances - 15 features - 2 classes - 834 missing values
No data.
748 runs0 likes0 downloads0 reach0 impact
274 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
748 runs0 likes0 downloads0 reach0 impact
148 instances - 19 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
748 runs0 likes0 downloads0 reach0 impact
250 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
748 runs0 likes0 downloads0 reach0 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
747 runs0 likes0 downloads0 reach0 impact
200 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
747 runs0 likes0 downloads0 reach0 impact
4177 instances - 9 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
747 runs0 likes0 downloads0 reach0 impact
145 instances - 95 features - 2 classes - 0 missing values
No data.
747 runs0 likes0 downloads0 reach0 impact
369 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
746 runs0 likes0 downloads0 reach0 impact
250 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
746 runs0 likes0 downloads0 reach0 impact
72 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
746 runs0 likes0 downloads0 reach0 impact
1024 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
745 runs0 likes0 downloads0 reach0 impact
240 instances - 125 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
745 runs0 likes0 downloads0 reach0 impact
3107 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
744 runs0 likes0 downloads0 reach0 impact
8192 instances - 33 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
744 runs0 likes0 downloads0 reach0 impact
130 instances - 10 features - 2 classes - 97 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
744 runs0 likes0 downloads0 reach0 impact
7019 instances - 61 features - 2 classes - 43814 missing values
Datasets for `Pattern Recognition and Neural Networks' by B.D. Ripley ===================================================================== Cambridge University Press (1996) ISBN 0-521-46086-7 The…
743 runs0 likes0 downloads0 reach0 impact
200 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
740 runs0 likes0 downloads0 reach0 impact
51 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes0 downloads0 reach0 impact
475 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes0 downloads0 reach0 impact
4052 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes0 downloads0 reach0 impact
662 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes0 downloads0 reach0 impact
500 instances - 101 features - 2 classes - 0 missing values
87 persons with lupus nephritis. Followed up 15+ years. 35 deaths. Var = duration of disease. Over 40 baseline variables avaiable from authors. Description : For description of this data set arising…
737 runs0 likes0 downloads0 reach0 impact
87 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
737 runs0 likes0 downloads0 reach0 impact
47 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
737 runs0 likes0 downloads0 reach0 impact
303 instances - 14 features - 2 classes - 6 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
737 runs0 likes0 downloads0 reach0 impact
3772 instances - 30 features - 2 classes - 6064 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
736 runs0 likes0 downloads0 reach0 impact
92 instances - 6 features - 2 classes - 26 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
736 runs0 likes0 downloads0 reach0 impact
452 instances - 280 features - 2 classes - 408 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
736 runs0 likes0 downloads0 reach0 impact
1473 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
736 runs0 likes0 downloads0 reach0 impact
364 instances - 33 features - 2 classes - 80 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
734 runs0 likes0 downloads0 reach0 impact
506 instances - 14 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
734 runs0 likes0 downloads0 reach0 impact
100 instances - 101 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
734 runs0 likes0 downloads0 reach0 impact
74 instances - 28 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
733 runs0 likes0 downloads0 reach0 impact
87 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
733 runs0 likes0 downloads0 reach0 impact
7485 instances - 56 features - 2 classes - 32427 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
732 runs0 likes0 downloads0 reach0 impact
63 instances - 32 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
731 runs0 likes0 downloads0 reach0 impact
93 instances - 7 features - 2 classes - 0 missing values
Dataset from the MLRR repository: http://axon.cs.byu.edu:5000/
731 runs0 likes0 downloads0 reach0 impact
151 instances - 7 features - 3 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
730 runs0 likes0 downloads0 reach0 impact
93 instances - 23 features - 2 classes - 14 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
729 runs0 likes0 downloads0 reach0 impact
45 instances - 47 features - 2 classes - 0 missing values