Data
plasma_retinol

plasma_retinol

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • binarized Biostatistics Data Analysis Health Medicine mythbusting_1 study_1 study_123 study_15 study_20 study_41 study_7 study_88
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

14 features

binaryClass (target)nominal2 unique values
0 missing
AGEnumeric60 unique values
0 missing
SEXnominal2 unique values
0 missing
SMOKSTATnominal3 unique values
0 missing
QUETELETnumeric258 unique values
0 missing
VITUSEnominal3 unique values
0 missing
CALORIESnumeric311 unique values
0 missing
FATnumeric275 unique values
0 missing
FIBERnumeric157 unique values
0 missing
ALCOHOLnumeric71 unique values
0 missing
CHOLESTEROLnumeric304 unique values
0 missing
BETADIETnumeric302 unique values
0 missing
RETDIETnumeric278 unique values
0 missing
BETAPLASMAnumeric212 unique values
0 missing

107 properties

315
Number of instances (rows) of the dataset.
14
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
10
Number of numeric attributes.
4
Number of nominal attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.42
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
163.45
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Number of binary attributes.
1.14
First quartile of skewness among attributes of the numeric type.
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.58
Standard deviation of the number of distinct values among attributes of the nominal type.
0.44
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.5
Average number of distinct values among the attributes of the nominal type.
10.75
First quartile of standard deviation of attributes of the numeric type.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.43
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
3.06
Mean skewness among attributes of the numeric type.
1.42
Second quartile (Median) of entropy among attributes.
0.42
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.44
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
57.78
Percentage of instances belonging to the most frequent class.
313.06
Mean standard deviation of attributes of the numeric type.
3.44
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.98
Entropy of the target attribute values.
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
182
Number of instances belonging to the most frequent class.
0.57
Minimal entropy among attributes.
133.46
Second quartile (Median) of means among attributes of the numeric type.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
1.57
Maximum entropy among attributes.
-0.87
Minimum kurtosis among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.42
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.43
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
221.33
Maximum kurtosis among attributes of the numeric type.
3.28
Minimum of means among attributes of the numeric type.
1.55
Second quartile (Median) of skewness among attributes of the numeric type.
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
-0.01
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
2185.6
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
14.29
Percentage of binary attributes.
82.91
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.04
Number of attributes divided by the number of instances.
0.01
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of instances having missing values.
1.57
Third quartile of entropy among attributes.
0.47
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
136.31
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3
The maximum number of distinct values among attributes of the nominal type.
0.3
Minimum skewness among attributes of the numeric type.
0
Percentage of missing values.
22.42
Third quartile of kurtosis among attributes of the numeric type.
0.57
Average class difference between consecutive instances.
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
13.82
Maximum skewness among attributes of the numeric type.
5.33
Minimum standard deviation of attributes of the numeric type.
71.43
Percentage of numeric attributes.
1073.7
Third quartile of means among attributes of the numeric type.
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.44
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1473.89
Maximum standard deviation of attributes of the numeric type.
42.22
Percentage of instances belonging to the least frequent class.
28.57
Percentage of nominal attributes.
0.01
Third quartile of mutual information between the nominal attributes and the target attribute.
0.43
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.47
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.19
Average entropy of the attributes.
133
Number of instances belonging to the least frequent class.
0.57
First quartile of entropy among attributes.
3.79
Third quartile of skewness among attributes of the numeric type.
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
29.73
Mean kurtosis among attributes of the numeric type.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.01
First quartile of kurtosis among attributes of the numeric type.
612.05
Third quartile of standard deviation of attributes of the numeric type.
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.44
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
541.67
Mean of means among attributes of the numeric type.
0.5
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
22.82
First quartile of means among attributes of the numeric type.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.43
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.47
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.01
Average mutual information between the nominal attributes and the target attribute.
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes

15 tasks

549 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
213 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task