Data
wind_correlations

wind_correlations

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • binarized Chemistry Life Science mythbusting_1 study_1 study_123 study_15 study_20 study_41
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

47 features

binaryClass (target)nominal2 unique values
0 missing
latitudenumeric43 unique values
0 missing
longitudenumeric44 unique values
0 missing
station_1numeric44 unique values
0 missing
station_2numeric45 unique values
0 missing
station_3numeric44 unique values
0 missing
station_4numeric44 unique values
0 missing
station_5numeric44 unique values
0 missing
station_6numeric43 unique values
0 missing
station_7numeric42 unique values
0 missing
station_8numeric41 unique values
0 missing
station_9numeric43 unique values
0 missing
station_10numeric44 unique values
0 missing
station_11numeric44 unique values
0 missing
station_12numeric45 unique values
0 missing
station_13numeric42 unique values
0 missing
station_14numeric43 unique values
0 missing
station_15numeric43 unique values
0 missing
station_16numeric43 unique values
0 missing
station_17numeric45 unique values
0 missing
station_18numeric45 unique values
0 missing
station_19numeric45 unique values
0 missing
station_20numeric45 unique values
0 missing
station_21numeric44 unique values
0 missing
station_22numeric44 unique values
0 missing
station_23numeric40 unique values
0 missing
station_24numeric43 unique values
0 missing
station_25numeric43 unique values
0 missing
station_26numeric44 unique values
0 missing
station_27numeric44 unique values
0 missing
station_28numeric44 unique values
0 missing
station_29numeric45 unique values
0 missing
station_30numeric45 unique values
0 missing
station_31numeric44 unique values
0 missing
station_32numeric44 unique values
0 missing
station_33numeric44 unique values
0 missing
station_34numeric45 unique values
0 missing
station_35numeric44 unique values
0 missing
station_36numeric44 unique values
0 missing
station_37numeric44 unique values
0 missing
station_38numeric43 unique values
0 missing
station_39numeric45 unique values
0 missing
station_40numeric43 unique values
0 missing
station_41numeric44 unique values
0 missing
station_42numeric42 unique values
0 missing
station_43numeric41 unique values
0 missing
station_44numeric45 unique values
0 missing

107 properties

45
Number of instances (rows) of the dataset.
47
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
46
Number of numeric attributes.
1
Number of nominal attributes.
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.51
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
150.88
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.18
Second quartile (Median) of skewness among attributes of the numeric type.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
1.04
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
2.13
Percentage of binary attributes.
0.19
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
-1.17
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.62
Maximum skewness among attributes of the numeric type.
0.13
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
1.75
Third quartile of kurtosis among attributes of the numeric type.
0.48
Average class difference between consecutive instances.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.53
Maximum standard deviation of attributes of the numeric type.
48.89
Percentage of instances belonging to the least frequent class.
97.87
Percentage of numeric attributes.
0.55
Third quartile of means among attributes of the numeric type.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
22
Number of instances belonging to the least frequent class.
2.13
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.2
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1.14
Mean kurtosis among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.33
Third quartile of skewness among attributes of the numeric type.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.99
Mean of means among attributes of the numeric type.
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.05
First quartile of kurtosis among attributes of the numeric type.
0.23
Third quartile of standard deviation of attributes of the numeric type.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.41
First quartile of means among attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
-0.17
First quartile of skewness among attributes of the numeric type.
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.17
Mean skewness among attributes of the numeric type.
0.16
First quartile of standard deviation of attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.11
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
51.11
Percentage of instances belonging to the most frequent class.
0.21
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1
Entropy of the target attribute values.
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
23
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.48
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.75
Minimum kurtosis among attributes of the numeric type.
0.48
Second quartile (Median) of means among attributes of the numeric type.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.24
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
12.99
Maximum kurtosis among attributes of the numeric type.
-33.86
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

14 tasks

517 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
212 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task