Data
wisconsin

wisconsin

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • binarized Health Medicine mythbusting_1 study_1 study_123 study_15 study_20 study_41 study_7 study_88
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

33 features

binaryClass (target)nominal2 unique values
0 missing
lymph_node_statusnumeric22 unique values
0 missing
radius_meannumeric174 unique values
0 missing
radius_senumeric190 unique values
0 missing
radius_worstnumeric177 unique values
0 missing
texture_meannumeric188 unique values
0 missing
texture_senumeric175 unique values
0 missing
texture_worstnumeric188 unique values
0 missing
perimeter_meannumeric192 unique values
0 missing
perimeter_senumeric185 unique values
0 missing
perimeter_worstnumeric172 unique values
0 missing
area_meannumeric190 unique values
0 missing
area_senumeric192 unique values
0 missing
area_worstnumeric187 unique values
0 missing
smoothness_meannumeric189 unique values
0 missing
smoothness_senumeric192 unique values
0 missing
smoothness_worstnumeric193 unique values
0 missing
compactness_meannumeric189 unique values
0 missing
compactness_senumeric188 unique values
0 missing
compactness_worstnumeric183 unique values
0 missing
concavity_meannumeric185 unique values
0 missing
concavity_senumeric191 unique values
0 missing
concavity_worstnumeric179 unique values
0 missing
concave_points_meannumeric183 unique values
0 missing
concave_points_senumeric180 unique values
0 missing
concave_points_worstnumeric187 unique values
0 missing
symmetry_meannumeric169 unique values
0 missing
symmetry_senumeric187 unique values
0 missing
symmetry_worstnumeric193 unique values
0 missing
fractal_dimension_meannumeric181 unique values
0 missing
fractal_dimension_senumeric188 unique values
0 missing
fractal_dimension_worstnumeric185 unique values
0 missing
tumor_sizenumeric39 unique values
0 missing

107 properties

194
Number of instances (rows) of the dataset.
33
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
32
Number of numeric attributes.
1
Number of nominal attributes.
3.9
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
3.81
Third quartile of kurtosis among attributes of the numeric type.
0.63
Average class difference between consecutive instances.
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
587.04
Maximum standard deviation of attributes of the numeric type.
46.39
Percentage of instances belonging to the least frequent class.
96.97
Percentage of numeric attributes.
20.09
Third quartile of means among attributes of the numeric type.
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.43
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
90
Number of instances belonging to the least frequent class.
3.03
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.48
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.48
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.83
Mean kurtosis among attributes of the numeric type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
1.63
Third quartile of skewness among attributes of the numeric type.
0.08
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.43
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
87.55
Mean of means among attributes of the numeric type.
0.43
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.46
First quartile of kurtosis among attributes of the numeric type.
4.31
Third quartile of standard deviation of attributes of the numeric type.
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.09
First quartile of means among attributes of the numeric type.
0.48
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.48
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.48
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.08
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.43
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
0.61
First quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.14
Mean skewness among attributes of the numeric type.
0.02
First quartile of standard deviation of attributes of the numeric type.
0.48
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.48
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.43
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
53.61
Percentage of instances belonging to the most frequent class.
33.36
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.08
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
104
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.74
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1
Entropy of the target attribute values.
Maximum entropy among attributes.
-0.26
Minimum kurtosis among attributes of the numeric type.
0.34
Second quartile (Median) of means among attributes of the numeric type.
0.48
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.54
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
26.3
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.49
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
1401.76
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1.07
Second quartile (Median) of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
3.03
Percentage of binary attributes.
0.12
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.17
Number of attributes divided by the number of instances.
2
The maximum number of distinct values among attributes of the nominal type.
-0.13
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.48
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.

15 tasks

564 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
208 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task