Data
ar1

ar1

active ARFF Publicly available Visibility: public Uploaded 06-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Data Science mythbusting_1 PROMISE Software study_1 study_123 study_15 study_20 study_41 study_7 study_88
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable, refutable, verifiable, and/or improvable predictive models of software engineering. If you publish material based on PROMISE data sets then, please follow the acknowledgment guidelines posted on the PROMISE repository web page http://promise.site.uottowa.ca/SERepository. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --Title: AR1 /Software Defect Prediction --Date: February, 4th, 2009 --Data from a Turkish white-goods manufacturer --Donated by: Software Research Laboratory (Softlab), Bogazici University, Istanbul, Turkey --Website: http://softlab.boun.edu.tr --Contact address: ayse.tosun@boun.edu.tr, bener@boun.edu.tr --Description: Embedded software in a white-goods product. Implemented in C. Consists of 121 modules (9 defective / 112 defect-free) 29 static code attributes (McCabe, Halstead and LOC measures) and 1 defect information(false/true) Function/method level static code attributes are collected using Prest Metrics Extraction and Analysis Tool [1]. [1] Prest Metrics Extraction and Analysis Tool, available at http://softlab.boun.edu.tr/?q=resources&i=tools.

30 features

defects (target)nominal2 unique values
0 missing
total_locnumeric41 unique values
0 missing
blank_locnumeric6 unique values
0 missing
comment_locnumeric21 unique values
0 missing
code_and_comment_locnumeric3 unique values
0 missing
executable_locnumeric37 unique values
0 missing
unique_operandsnumeric33 unique values
0 missing
unique_operatorsnumeric17 unique values
0 missing
total_operandsnumeric49 unique values
0 missing
total_operatorsnumeric59 unique values
0 missing
halstead_vocabularynumeric42 unique values
0 missing
halstead_lengthnumeric71 unique values
0 missing
halstead_volumenumeric84 unique values
0 missing
halstead_levelnumeric35 unique values
0 missing
halstead_difficultynumeric35 unique values
0 missing
halstead_effortnumeric90 unique values
0 missing
halstead_errornumeric24 unique values
0 missing
halstead_timenumeric89 unique values
0 missing
branch_countnumeric20 unique values
0 missing
decision_countnumeric20 unique values
0 missing
call_pairsnumeric14 unique values
0 missing
condition_countnumeric18 unique values
0 missing
multiple_condition_countnumeric6 unique values
0 missing
cyclomatic_complexitynumeric17 unique values
0 missing
cyclomatic_densitynumeric29 unique values
0 missing
decision_densitynumeric12 unique values
0 missing
design_complexitynumeric14 unique values
0 missing
design_densitynumeric33 unique values
0 missing
normalized_cyclomatic_complexitynumeric27 unique values
0 missing
formal_parametersnumeric4 unique values
0 missing

107 properties

121
Number of instances (rows) of the dataset.
30
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
29
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
9
Number of instances belonging to the least frequent class.
3.33
Percentage of nominal attributes.
2.61
Third quartile of skewness among attributes of the numeric type.
-0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
-0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.47
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
8.07
Mean kurtosis among attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
17.43
Third quartile of standard deviation of attributes of the numeric type.
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
119.61
Mean of means among attributes of the numeric type.
0.25
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.99
First quartile of kurtosis among attributes of the numeric type.
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.09
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.51
First quartile of means among attributes of the numeric type.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
-0.03
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
-0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.47
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
1.63
First quartile of skewness among attributes of the numeric type.
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.09
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.25
Mean skewness among attributes of the numeric type.
0.81
First quartile of standard deviation of attributes of the numeric type.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
-0.03
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
92.56
Percentage of instances belonging to the most frequent class.
232.28
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
4.93
Second quartile (Median) of kurtosis among attributes of the numeric type.
-0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.38
Entropy of the target attribute values.
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
112
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
4.76
Second quartile (Median) of means among attributes of the numeric type.
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.13
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
47.41
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
1.95
Second quartile (Median) of skewness among attributes of the numeric type.
-0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
-0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
2861.8
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
6.11
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.25
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
3.33
Percentage of binary attributes.
Third quartile of entropy among attributes.
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
0
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
9.63
Third quartile of kurtosis among attributes of the numeric type.
0.88
Average class difference between consecutive instances.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.47
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
6.49
Maximum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
20.59
Third quartile of means among attributes of the numeric type.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
5926.75
Maximum standard deviation of attributes of the numeric type.
7.44
Percentage of instances belonging to the least frequent class.
96.67
Percentage of numeric attributes.

14 tasks

558 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: defects
198 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: defects
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: defects
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task