0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : Y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : Class
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : class
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : y
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : Target
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : Species
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : Species
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 30127 - estimation_procedure : 10-fold Crossvalidation - target_feature : Species
a
0 runs0 likes0 downloads0 reach0 impact
150 instances - 5 features - classes - 0 missing values
More information coming soon
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 103 features - 2 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 61 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 61 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 78 features - 2 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 101 features - 2 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 101 features - 0 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9795, f_measure: 0.9632, kappa: 0.9591, kb_relative_information_score: 0.9615, mean_absolute_error: 0.0074, mean_prior_absolute_error: 0.18, weighted_recall: 0.9632, number_of_instances: 10992, precision: 0.9632, predictive_accuracy: 0.9632, prior_entropy: 3.3208, relative_absolute_error: 0.0409, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.0858, root_relative_squared_error: 0.2862, unweighted_recall: 0.9631,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.979, f_measure: 0.9622, kappa: 0.9579, kb_relative_information_score: 0.9604, mean_absolute_error: 0.0076, mean_prior_absolute_error: 0.18, weighted_recall: 0.9622, number_of_instances: 10992, precision: 0.9622, predictive_accuracy: 0.9622, prior_entropy: 3.3208, relative_absolute_error: 0.0421, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.087, root_relative_squared_error: 0.29, unweighted_recall: 0.9621,
Classification/Risk prediction for Tabular data related to MI(Coronary heart disease)
1 datasets, 1 tasks, 0 flows, 0 runs
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 11 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 63 features - 2 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 29 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 19 features - 0 classes - 3 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 15 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 10 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 9 features - 2 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 10 features - 0 classes - 34 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 11 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 17 features - 0 classes - 76 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 15 features - 2 classes - 68 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 21 features - 0 classes - 0 missing values
See [https://github.com/slds-lmu/paper_2023_ci_for_ge](https://github.com/slds-lmu/paper_2023_ci_for_ge) for a description.
0 runs0 likes0 downloads0 reach0 impact
5100000 instances - 21 features - 2 classes - 0 missing values
Myocardial infarction complications Database
0 runs0 likes0 downloads0 reach0 impact
30 instances - 5 features - 0 classes - 0 missing values
Myocardial infarction complications Database
0 runs0 likes0 downloads0 reach0 impact
30 instances - 5 features - 0 classes - 0 missing values
Myocardial infarction complications Database
0 runs0 likes0 downloads0 reach0 impact
30 instances - 6 features - 0 classes - 0 missing values
Myocardial infarction complications Database
0 runs0 likes0 downloads0 reach0 impact
30 instances - 6 features - 0 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8027, f_measure: 0.7241, kappa: 0.4461, kb_relative_information_score: 0.2423, mean_absolute_error: 0.393, mean_prior_absolute_error: 0.4984, weighted_recall: 0.7243, number_of_instances: 98050, precision: 0.724, predictive_accuracy: 0.7243, prior_entropy: 0.9976, relative_absolute_error: 0.7885, root_mean_prior_squared_error: 0.4992, root_mean_squared_error: 0.4298, root_relative_squared_error: 0.8609, unweighted_recall: 0.7228,
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement…
1 runs0 likes0 downloads0 reach0 impact
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 37600 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : LET_IS
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 37600 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : class
Classification/Risk prediction for Tabular data related to MI(Coronary heart disease)
1 datasets, 1 tasks, 0 flows, 0 runs
Myocardial infarction complications Database
0 runs0 likes0 downloads0 reach0 impact
1649 instances - 105 features - 2 classes - 0 missing values
illustrating how to create a benchmark suite
2 datasets, 2 tasks, 0 flows, 0 runs
illustrating how to create a benchmark suite
2 datasets, 2 tasks, 0 flows, 0 runs
illustrating how to create a benchmark suite
2 datasets, 2 tasks, 0 flows, 0 runs
illustrating how to create a benchmark suite
250 datasets, 250 tasks, 0 flows, 0 runs
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6899, f_measure: 0.7235, kappa: 0.2005, kb_relative_information_score: 0.0937, mean_absolute_error: 0.3023, mean_prior_absolute_error: 0.363, weighted_recall: 0.742, number_of_instances: 748, precision: 0.7143, predictive_accuracy: 0.742, prior_entropy: 0.7916, relative_absolute_error: 0.8327, root_mean_prior_squared_error: 0.4258, root_mean_squared_error: 0.427, root_relative_squared_error: 1.0026, unweighted_recall: 0.5892,
test
1 datasets, 1 tasks, 0 flows, 0 runs
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9838, f_measure: 0.9332, kappa: 0.8648, kb_relative_information_score: 0.6372, mean_absolute_error: 0.2027, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9334, number_of_instances: 14980, precision: 0.9338, predictive_accuracy: 0.9334, prior_entropy: 0.9924, relative_absolute_error: 0.4097, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2614, root_relative_squared_error: 0.5255, unweighted_recall: 0.9306,
A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive…
1 runs0 likes0 downloads0 reach0 impact
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 37411 - estimation_procedure : 10-fold Crossvalidation - target_feature : vonfry-test
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9873, f_measure: 0.9667, kappa: 0.95, kb_relative_information_score: 0.9338, mean_absolute_error: 0.0356, mean_prior_absolute_error: 0.4444, weighted_recall: 0.9667, number_of_instances: 150, precision: 0.9668, predictive_accuracy: 0.9667, prior_entropy: 1.585, relative_absolute_error: 0.08, root_mean_prior_squared_error: 0.4714, root_mean_squared_error: 0.1424, root_relative_squared_error: 0.302, unweighted_recall: 0.9667,
Classifier implementing the k-nearest neighbors vote.
1 runs0 likes0 downloads0 reach0 impact
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9873, f_measure: 0.9667, kappa: 0.95, kb_relative_information_score: 0.9338, mean_absolute_error: 0.0356, mean_prior_absolute_error: 0.4444, weighted_recall: 0.9667, number_of_instances: 150, precision: 0.9668, predictive_accuracy: 0.9667, prior_entropy: 1.585, relative_absolute_error: 0.08, root_mean_prior_squared_error: 0.4714, root_mean_squared_error: 0.1424, root_relative_squared_error: 0.302, unweighted_recall: 0.9667,
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 37379 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : root_mean_squared_error - target_feature : Sales
Rossmann Store Sales from Kaggle with some pre-processing
0 runs0 likes0 downloads0 reach0 impact
804056 instances - 18 features - 0 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9838, f_measure: 0.9315, kappa: 0.8612, kb_relative_information_score: 0.6353, mean_absolute_error: 0.2036, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9316, number_of_instances: 14980, precision: 0.9321, predictive_accuracy: 0.9316, prior_entropy: 0.9924, relative_absolute_error: 0.4115, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2621, root_relative_squared_error: 0.527, unweighted_recall: 0.9287,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9947, f_measure: 0.969, kappa: 0.9374, kb_relative_information_score: 0.8914, mean_absolute_error: 0.0579, mean_prior_absolute_error: 0.4948, weighted_recall: 0.969, number_of_instances: 14980, precision: 0.969, predictive_accuracy: 0.969, prior_entropy: 0.9924, relative_absolute_error: 0.117, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.159, root_relative_squared_error: 0.3196, unweighted_recall: 0.9684,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9931, f_measure: 0.9747, kappa: 0.9489, kb_relative_information_score: 0.9177, mean_absolute_error: 0.0428, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9747, number_of_instances: 14980, precision: 0.9747, predictive_accuracy: 0.9747, prior_entropy: 0.9924, relative_absolute_error: 0.0865, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.1478, root_relative_squared_error: 0.2972, unweighted_recall: 0.9744,
Classifier implementing the k-nearest neighbors vote.
3 runs0 likes0 downloads0 reach2 impact
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9367, f_measure: 0.8791, kappa: 0.7316, kb_relative_information_score: 0.598, mean_absolute_error: 0.194, mean_prior_absolute_error: 0.456, weighted_recall: 0.8811, number_of_instances: 19020, precision: 0.8809, predictive_accuracy: 0.8811, prior_entropy: 0.9355, relative_absolute_error: 0.4255, root_mean_prior_squared_error: 0.4775, root_mean_squared_error: 0.2988, root_relative_squared_error: 0.6257, unweighted_recall: 0.8554,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9366, f_measure: 0.8797, kappa: 0.7331, kb_relative_information_score: 0.5974, mean_absolute_error: 0.1943, mean_prior_absolute_error: 0.456, weighted_recall: 0.8817, number_of_instances: 19020, precision: 0.8814, predictive_accuracy: 0.8817, prior_entropy: 0.9355, relative_absolute_error: 0.4262, root_mean_prior_squared_error: 0.4775, root_mean_squared_error: 0.299, root_relative_squared_error: 0.6261, unweighted_recall: 0.8564,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9828, f_measure: 0.9324, kappa: 0.8631, kb_relative_information_score: 0.6357, mean_absolute_error: 0.2031, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9326, number_of_instances: 14980, precision: 0.9331, predictive_accuracy: 0.9326, prior_entropy: 0.9924, relative_absolute_error: 0.4105, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2631, root_relative_squared_error: 0.5289, unweighted_recall: 0.9297,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9824, f_measure: 0.9304, kappa: 0.859, kb_relative_information_score: 0.6362, mean_absolute_error: 0.2027, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9306, number_of_instances: 14980, precision: 0.9311, predictive_accuracy: 0.9306, prior_entropy: 0.9924, relative_absolute_error: 0.4097, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2633, root_relative_squared_error: 0.5293, unweighted_recall: 0.9276,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9826, f_measure: 0.929, kappa: 0.8563, kb_relative_information_score: 0.635, mean_absolute_error: 0.2033, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9292, number_of_instances: 14980, precision: 0.9298, predictive_accuracy: 0.9292, prior_entropy: 0.9924, relative_absolute_error: 0.4109, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2635, root_relative_squared_error: 0.5298, unweighted_recall: 0.9261,
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9826, f_measure: 0.9298, kappa: 0.8579, kb_relative_information_score: 0.636, mean_absolute_error: 0.203, mean_prior_absolute_error: 0.4948, weighted_recall: 0.93, number_of_instances: 14980, precision: 0.9306, predictive_accuracy: 0.93, prior_entropy: 0.9924, relative_absolute_error: 0.4102, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2629, root_relative_squared_error: 0.5287, unweighted_recall: 0.9269,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9823, f_measure: 0.9301, kappa: 0.8585, kb_relative_information_score: 0.6358, mean_absolute_error: 0.2028, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9303, number_of_instances: 14980, precision: 0.9308, predictive_accuracy: 0.9303, prior_entropy: 0.9924, relative_absolute_error: 0.41, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2636, root_relative_squared_error: 0.53, unweighted_recall: 0.9273,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9831, f_measure: 0.9327, kappa: 0.8638, kb_relative_information_score: 0.636, mean_absolute_error: 0.2031, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9329, number_of_instances: 14980, precision: 0.9334, predictive_accuracy: 0.9329, prior_entropy: 0.9924, relative_absolute_error: 0.4105, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2626, root_relative_squared_error: 0.5279, unweighted_recall: 0.93,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9827, f_measure: 0.9294, kappa: 0.8571, kb_relative_information_score: 0.6365, mean_absolute_error: 0.2025, mean_prior_absolute_error: 0.4948, weighted_recall: 0.9296, number_of_instances: 14980, precision: 0.9302, predictive_accuracy: 0.9296, prior_entropy: 0.9924, relative_absolute_error: 0.4094, root_mean_prior_squared_error: 0.4974, root_mean_squared_error: 0.2628, root_relative_squared_error: 0.5284, unweighted_recall: 0.9266,
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6222, f_measure: 0.7143, kappa: 0.3778, kb_relative_information_score: 0.1028, mean_absolute_error: 0.42, mean_prior_absolute_error: 0.4643, weighted_recall: 0.7143, number_of_instances: 14, precision: 0.7143, predictive_accuracy: 0.7143, prior_entropy: 0.9413, relative_absolute_error: 0.9046, root_mean_prior_squared_error: 0.4795, root_mean_squared_error: 0.4844, root_relative_squared_error: 1.0103, unweighted_recall: 0.6889,
1 runs0 likes0 downloads0 reach0 impact
uploader_id : 37230 - estimation_procedure : 10-fold Crossvalidation - target_feature : play
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6222, f_measure: 0.7794, kappa: 0.5116, kb_relative_information_score: 0.1002, mean_absolute_error: 0.4214, mean_prior_absolute_error: 0.4643, weighted_recall: 0.7857, number_of_instances: 14, precision: 0.7821, predictive_accuracy: 0.7857, prior_entropy: 0.9413, relative_absolute_error: 0.9077, root_mean_prior_squared_error: 0.4795, root_mean_squared_error: 0.4858, root_relative_squared_error: 1.0132, unweighted_recall: 0.7444,
1 runs0 likes0 downloads0 reach0 impact
uploader_id : 37222 - estimation_procedure : 10-fold Crossvalidation - target_feature : play
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6, f_measure: 0.6324, kappa: 0.186, kb_relative_information_score: 0.0345, mean_absolute_error: 0.4436, mean_prior_absolute_error: 0.4643, weighted_recall: 0.6429, number_of_instances: 14, precision: 0.6286, predictive_accuracy: 0.6429, prior_entropy: 0.9413, relative_absolute_error: 0.9554, root_mean_prior_squared_error: 0.4795, root_mean_squared_error: 0.5077, root_relative_squared_error: 1.0588, unweighted_recall: 0.5889,
1 runs0 likes0 downloads0 reach0 impact
uploader_id : 37230 - estimation_procedure : 10-fold Crossvalidation - target_feature : play
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6222, f_measure: 0.5918, kappa: 0.1026, kb_relative_information_score: 0.0919, mean_absolute_error: 0.4243, mean_prior_absolute_error: 0.4643, weighted_recall: 0.6429, number_of_instances: 14, precision: 0.6071, predictive_accuracy: 0.6429, prior_entropy: 0.9413, relative_absolute_error: 0.9138, root_mean_prior_squared_error: 0.4795, root_mean_squared_error: 0.4934, root_relative_squared_error: 1.0289, unweighted_recall: 0.5444,
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
1 runs0 likes0 downloads0 reach0 impact
uploader_id : 37223 - estimation_procedure : 10-fold Crossvalidation - target_feature : play
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 37230 - estimation_procedure : 10-fold Crossvalidation - target_feature : play
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
1)BUY #BANKNIFTY 45300 PE ABOVE -490 TARGET- 40 /70/100/200/250 Point SL-450 2)BUY #BANKNIFTY 45300 PE ABOVE -550 TARGET- 40 /70/100/200/250 Point SL-500 3)BUY#ALKEM 4100 CE ABOVE -218 TARGE- 228,250…
1 datasets, 1 tasks, 0 flows, 0 runs
1)BUY #BANKNIFTY 45300 PE ABOVE -490 TARGET- 40 /70/100/200/250 Point SL-450 2)BUY #BANKNIFTY 45300 PE ABOVE -550 TARGET- 40 /70/100/200/250 Point SL-500 3)BUY#ALKEM 4100 CE ABOVE -218 TARGE- 228,250…
1 datasets, 1 tasks, 0 flows, 0 runs
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8188, f_measure: 0.8675, kappa: 0.5664, kb_relative_information_score: 0.3369, mean_absolute_error: 0.1957, mean_prior_absolute_error: 0.3211, weighted_recall: 0.8736, number_of_instances: 1060, precision: 0.8663, predictive_accuracy: 0.8736, prior_entropy: 0.7183, relative_absolute_error: 0.6093, root_mean_prior_squared_error: 0.3986, root_mean_squared_error: 0.3293, root_relative_squared_error: 0.826, unweighted_recall: 0.7598,
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement…
1 runs0 likes0 downloads0 reach0 impact
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach0 impact
14 instances - 5 features - 2 classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6222, f_measure: 0.7794, kappa: 0.5116, kb_relative_information_score: 0.0812, mean_absolute_error: 0.4293, mean_prior_absolute_error: 0.4643, weighted_recall: 0.7857, number_of_instances: 14, precision: 0.7821, predictive_accuracy: 0.7857, prior_entropy: 0.9413, relative_absolute_error: 0.9246, root_mean_prior_squared_error: 0.4795, root_mean_squared_error: 0.4872, root_relative_squared_error: 1.0161, unweighted_recall: 0.7444,