Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
This collection complements the Padding Attacks benchmark datasets serves as a valuable benchmark training set for multi-class classification tasks or detecting information leakage via error code or…
96 datasets, 96 tasks, 0 flows, 0 runs
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
Bleichenbacher Padding Attack: Dataset created on 2023-12-13 with server panos Attribute Names: CCS0:tcp.srcport CCS0:tcp.dstport CCS0:tcp.port CCS0:tcp.stream CCS0:tcp.len CCS0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
7869 instances - 197 features - 11 classes - 612770 missing values
Bleichenbacher Padding Attack: Dataset created on 2023-12-13 with server netscalergcm Attribute Names: TLS0:tcp.srcport TLS0:tcp.dstport TLS0:tcp.port TLS0:tcp.stream TLS0:tcp.len TLS0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
7678 instances - 253 features - 11 classes - 1195562 missing values
Bleichenbacher Padding Attack: Dataset created on 2023-12-05 with server facebook Attribute Names: CKE0:tcp.srcport CKE0:tcp.dstport CKE0:tcp.port CKE0:tcp.stream CKE0:tcp.len CKE0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
19487 instances - 181 features - 11 classes - 1750620 missing values
Bleichenbacher Padding Attack: Dataset created on 2023-12-04 with server cisco Attribute Names: CCS0:tcp.srcport CCS0:tcp.dstport CCS0:tcp.port CCS0:tcp.stream CCS0:tcp.len CCS0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
7714 instances - 253 features - 11 classes - 1157656 missing values
Bleichenbacher Padding Attack: Dataset created on 2023-04-28 with server OpenSSL111t Attribute Names: TLS0:tcp.srcport TLS0:tcp.dstport TLS0:tcp.port TLS0:tcp.stream TLS0:tcp.len TLS0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
219900 instances - 95 features - 11 classes - 0 missing values
Bleichenbacher Padding Attack: Dataset created on 2023-04-28 with server OpenSSL097b Attribute Names: TLS0:tcp.srcport TLS0:tcp.dstport TLS0:tcp.port TLS0:tcp.stream TLS0:tcp.len TLS0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
219915 instances - 125 features - 11 classes - 6597420 missing values
Bleichenbacher Padding Attack: Dataset created on 2023-04-28 with server OpenSSL097a Attribute Names: TLS0:tcp.srcport TLS0:tcp.dstport TLS0:tcp.port TLS0:tcp.stream TLS0:tcp.len TLS0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
219913 instances - 125 features - 11 classes - 6597360 missing values
Bleichenbacher Padding Attack: Dataset created on 2023-04-28 with server DamnVulnerableOpenSSL Attribute Names: TLS0:tcp.srcport TLS0:tcp.dstport TLS0:tcp.port TLS0:tcp.stream TLS0:tcp.len…
0 runs0 likes0 downloads0 reach0 impact
219920 instances - 95 features - 11 classes - 0 missing values
Bleichenbacher Padding Attack: Dataset created on 2021-07-23 with server OpenSSL-1.1.1k Attribute Names: TLS0:tcp.srcport TLS0:tcp.dstport TLS0:tcp.port TLS0:tcp.stream TLS0:tcp.len TLS0:tcp.seq…
0 runs0 likes0 downloads0 reach0 impact
49977 instances - 117 features - 11 classes - 2196060 missing values
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
0 runs0 likes0 downloads0 reach0 impact
uploader_id : 2086 - estimation_procedure : 10-fold Crossvalidation - evaluation_measures : predictive_accuracy - target_feature : label
amphibians
0 runs0 likes0 downloads0 reach0 impact
189 instances - 16 features - 0 classes - 0 missing values
This dataset contains 340 instances concerning the frequencies of seven types of algae populations in different environments.
0 runs0 likes0 downloads0 reach0 impact
316 instances - 25 features - classes - 0 missing values
fake dataset without any value
0 runs0 likes0 downloads0 reach0 impact
73503 instances - 4 features - classes - 0 missing values
This data set consists of the marks secured by the students in various subjects.
0 runs0 likes0 downloads0 reach0 impact
1000 instances - 8 features - 2 classes - 0 missing values
test
0 runs0 likes0 downloads0 reach0 impact
73503 instances - 4 features - classes - 0 missing values
The dataset consists of measurements of fetal heart rate and uterine contraction features on cardiotocograms classified by expert obstetricians.
0 runs0 likes0 downloads0 reach0 impact
2126 instances - 33 features - classes - 0 missing values
Test dataset to see upload.
0 runs0 likes0 downloads0 reach0 impact
73503 instances - 4 features - 2 classes - 0 missing values
The "Cookbook Reviews" is an extensive data set that includes a range of information about user interactions and recipe reviews. It contains important details like the recipe name, where it stands in…
0 runs0 likes0 downloads0 reach0 impact
18182 instances - 14 features - 0 classes - 2 missing values
Predicting forest cover ...
0 runs0 likes0 downloads0 reach0 impact
18182 instances - 14 features - 0 classes - 2 missing values
Predicting forest cover ...
0 runs0 likes0 downloads0 reach0 impact
18182 instances - 14 features - 0 classes - 2 missing values
This dataset aims to distinguish seven different types of dry beans, taking into account the features such as form, shape, type, and structure by the market situation.
0 runs0 likes0 downloads0 reach0 impact
13611 instances - 23 features - classes - 0 missing values
Predicting forest cover ...
0 runs0 likes0 downloads0 reach0 impact
73503 instances - 4 features - 2 classes - 0 missing values
This dataset includes demographic data for users who have rated the top 15 most-rated movies, ranked based on a star rating system.
0 runs0 likes0 downloads0 reach0 impact
260 instances - 79 features - classes - 0 missing values
This dataset consists of predicting the cellular localization sites of proteins.
0 runs0 likes0 downloads0 reach0 impact
1484 instances - 18 features - classes - 0 missing values
The dataset contains 15 classes of 24 instances each, where each class references to a hand movement type in libras.
0 runs0 likes0 downloads0 reach0 impact
360 instances - 105 features - classes - 0 missing values
This dataset includes demographic data for users who have rated the top 15 most-rated movies, ranked based on a star rating system.
0 runs0 likes0 downloads0 reach0 impact
260 instances - 79 features - classes - 0 missing values
This dataset is composed of demographic data about 5000 people and their sushi preferences.
0 runs0 likes0 downloads0 reach0 impact
5000 instances - 136 features - classes - 0 missing values
A brief description of your dataset.
0 runs0 likes0 downloads0 reach0 impact
3 instances - 3 features - 3 classes - 0 missing values
The objective is to identify each of a large number of black-and-white rectangular pixel displays as one of the 26 capital letters in the English alphabet.
0 runs0 likes0 downloads0 reach0 impact
20000 instances - 42 features - classes - 0 missing values
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6384, kappa: 0.1024, kb_relative_information_score: 0.1397, mean_absolute_error: 0.172, mean_prior_absolute_error: 0.1799, weighted_recall: 0.1986, number_of_instances: 70000, predictive_accuracy: 0.1986, prior_entropy: 3.3198, relative_absolute_error: 0.9558, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.2933, root_relative_squared_error: 0.9777, unweighted_recall: 0.1833,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5219, kappa: 0.0289, kb_relative_information_score: 0.0432, mean_absolute_error: 0.2757, mean_prior_absolute_error: 0.2774, weighted_recall: 0.1882, number_of_instances: 797, predictive_accuracy: 0.1882, prior_entropy: 2.5803, relative_absolute_error: 0.994, root_mean_prior_squared_error: 0.3724, root_mean_squared_error: 0.3717, root_relative_squared_error: 0.9981, unweighted_recall: 0.1924,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.773, kappa: 0.4341, kb_relative_information_score: 0.3574, mean_absolute_error: 0.2447, mean_prior_absolute_error: 0.3439, weighted_recall: 0.6421, number_of_instances: 841, predictive_accuracy: 0.6421, prior_entropy: 1.7874, relative_absolute_error: 0.7116, root_mean_prior_squared_error: 0.4146, root_mean_squared_error: 0.355, root_relative_squared_error: 0.8562, unweighted_recall: 0.44,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6231, kappa: 0.0397, kb_relative_information_score: 0.1224, mean_absolute_error: 0.0713, mean_prior_absolute_error: 0.074, weighted_recall: 0.0767, number_of_instances: 7797, predictive_accuracy: 0.0767, prior_entropy: 4.7004, relative_absolute_error: 0.9637, root_mean_prior_squared_error: 0.1923, root_mean_squared_error: 0.1888, root_relative_squared_error: 0.9817, unweighted_recall: 0.0767,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4849, kappa: -0.0844, kb_relative_information_score: 0.0305, mean_absolute_error: 0.1668, mean_prior_absolute_error: 0.1653, weighted_recall: 0.0141, number_of_instances: 990, predictive_accuracy: 0.0141, prior_entropy: 3.4594, relative_absolute_error: 1.0094, root_mean_prior_squared_error: 0.2875, root_mean_squared_error: 0.2992, root_relative_squared_error: 1.0408, unweighted_recall: 0.0141,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9141, f_measure: 0.9679, kappa: 0.742, kb_relative_information_score: 0.4961, mean_absolute_error: 0.0502, mean_prior_absolute_error: 0.1152, weighted_recall: 0.9655, number_of_instances: 3772, precision: 0.9725, predictive_accuracy: 0.9655, prior_entropy: 0.3324, relative_absolute_error: 0.4355, root_mean_prior_squared_error: 0.2398, root_mean_squared_error: 0.1587, root_relative_squared_error: 0.6617, unweighted_recall: 0.9311,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6867, kappa: 0.2488, kb_relative_information_score: 0.2595, mean_absolute_error: 0.2709, mean_prior_absolute_error: 0.3132, weighted_recall: 0.4457, number_of_instances: 736, predictive_accuracy: 0.4457, prior_entropy: 2.2621, relative_absolute_error: 0.8649, root_mean_prior_squared_error: 0.3957, root_mean_squared_error: 0.3682, root_relative_squared_error: 0.9304, unweighted_recall: 0.338,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6879, kappa: 0.2525, kb_relative_information_score: 0.2491, mean_absolute_error: 0.2207, mean_prior_absolute_error: 0.2701, weighted_recall: 0.4257, number_of_instances: 6430, predictive_accuracy: 0.4257, prior_entropy: 2.4834, relative_absolute_error: 0.8171, root_mean_prior_squared_error: 0.3675, root_mean_squared_error: 0.3327, root_relative_squared_error: 0.9052, unweighted_recall: 0.3153,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7283, f_measure: 0.7486, kappa: 0.484, kb_relative_information_score: 0.2912, mean_absolute_error: 0.3659, mean_prior_absolute_error: 0.4886, weighted_recall: 0.7574, number_of_instances: 45312, precision: 0.7651, predictive_accuracy: 0.7574, prior_entropy: 0.9835, relative_absolute_error: 0.7488, root_mean_prior_squared_error: 0.4943, root_mean_squared_error: 0.4277, root_relative_squared_error: 0.8653, unweighted_recall: 0.7328,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6416, kappa: 0.1935, kb_relative_information_score: 0.1955, mean_absolute_error: 0.3386, mean_prior_absolute_error: 0.3748, weighted_recall: 0.3901, number_of_instances: 846, predictive_accuracy: 0.3901, prior_entropy: 1.9991, relative_absolute_error: 0.9033, root_mean_prior_squared_error: 0.4329, root_mean_squared_error: 0.4124, root_relative_squared_error: 0.9526, unweighted_recall: 0.4022,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6491, f_measure: 0.7002, kappa: 0.34, kb_relative_information_score: 0.1265, mean_absolute_error: 0.4008, mean_prior_absolute_error: 0.453, weighted_recall: 0.6994, number_of_instances: 958, precision: 0.7011, predictive_accuracy: 0.6994, prior_entropy: 0.931, relative_absolute_error: 0.8847, root_mean_prior_squared_error: 0.4759, root_mean_squared_error: 0.4479, root_relative_squared_error: 0.9411, unweighted_recall: 0.6709,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7631, kappa: 0.4122, kb_relative_information_score: 0.334, mean_absolute_error: 0.3013, mean_prior_absolute_error: 0.4101, weighted_recall: 0.6238, number_of_instances: 3190, predictive_accuracy: 0.6238, prior_entropy: 1.4802, relative_absolute_error: 0.7348, root_mean_prior_squared_error: 0.4528, root_mean_squared_error: 0.3882, root_relative_squared_error: 0.8574, unweighted_recall: 0.579,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7762, f_measure: 0.7754, kappa: 0.5248, kb_relative_information_score: 0.3459, mean_absolute_error: 0.3297, mean_prior_absolute_error: 0.4776, weighted_recall: 0.7798, number_of_instances: 4601, precision: 0.7784, predictive_accuracy: 0.7798, prior_entropy: 0.9674, relative_absolute_error: 0.6904, root_mean_prior_squared_error: 0.4886, root_mean_squared_error: 0.4116, root_relative_squared_error: 0.8424, unweighted_recall: 0.7546,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6785, f_measure: 0.7133, kappa: 0.3621, kb_relative_information_score: 0.1738, mean_absolute_error: 0.3832, mean_prior_absolute_error: 0.4545, weighted_recall: 0.7174, number_of_instances: 768, precision: 0.7114, predictive_accuracy: 0.7174, prior_entropy: 0.9331, relative_absolute_error: 0.843, root_mean_prior_squared_error: 0.4766, root_mean_squared_error: 0.446, root_relative_squared_error: 0.9357, unweighted_recall: 0.6765,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6747, kappa: 0.1105, kb_relative_information_score: 0.1942, mean_absolute_error: 0.1658, mean_prior_absolute_error: 0.18, weighted_recall: 0.2031, number_of_instances: 10992, predictive_accuracy: 0.2031, prior_entropy: 3.3208, relative_absolute_error: 0.9215, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.288, root_relative_squared_error: 0.9602, unweighted_recall: 0.1952,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6506, kb_relative_information_score: 0.061, mean_absolute_error: 0.3766, mean_prior_absolute_error: 0.4202, weighted_recall: 0.7, number_of_instances: 1000, predictive_accuracy: 0.7, prior_entropy: 0.8813, relative_absolute_error: 0.8963, root_mean_prior_squared_error: 0.4583, root_mean_squared_error: 0.4341, root_relative_squared_error: 0.9472, unweighted_recall: 0.5,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8407, f_measure: 0.8554, kappa: 0.7116, kb_relative_information_score: 0.5565, mean_absolute_error: 0.2379, mean_prior_absolute_error: 0.494, weighted_recall: 0.8551, number_of_instances: 690, precision: 0.8663, predictive_accuracy: 0.8551, prior_entropy: 0.9912, relative_absolute_error: 0.4815, root_mean_prior_squared_error: 0.497, root_mean_squared_error: 0.3452, root_relative_squared_error: 0.6946, unweighted_recall: 0.862,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5909, kappa: 0.104, kb_relative_information_score: 0.1232, mean_absolute_error: 0.1679, mean_prior_absolute_error: 0.18, weighted_recall: 0.1947, number_of_instances: 5620, predictive_accuracy: 0.1947, prior_entropy: 3.3218, relative_absolute_error: 0.9327, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.2898, root_relative_squared_error: 0.9658, unweighted_recall: 0.1944,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5495, kb_relative_information_score: 0.0624, mean_absolute_error: 0.4091, mean_prior_absolute_error: 0.4308, weighted_recall: 0.427, number_of_instances: 1473, predictive_accuracy: 0.427, prior_entropy: 1.539, relative_absolute_error: 0.9496, root_mean_prior_squared_error: 0.4641, root_mean_squared_error: 0.4523, root_relative_squared_error: 0.9745, unweighted_recall: 0.3333,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5807, kappa: 0.095, kb_relative_information_score: 0.1171, mean_absolute_error: 0.1645, mean_prior_absolute_error: 0.18, weighted_recall: 0.1855, number_of_instances: 2000, predictive_accuracy: 0.1855, prior_entropy: 3.3219, relative_absolute_error: 0.914, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.2871, root_relative_squared_error: 0.9568, unweighted_recall: 0.1855,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.758, kappa: 0.1106, kb_relative_information_score: 0.2861, mean_absolute_error: 0.1606, mean_prior_absolute_error: 0.18, weighted_recall: 0.1995, number_of_instances: 2000, predictive_accuracy: 0.1995, prior_entropy: 3.3219, relative_absolute_error: 0.8923, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.2834, root_relative_squared_error: 0.9446, unweighted_recall: 0.1995,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6396, kappa: 0.0972, kb_relative_information_score: 0.1665, mean_absolute_error: 0.1671, mean_prior_absolute_error: 0.18, weighted_recall: 0.1875, number_of_instances: 2000, predictive_accuracy: 0.1875, prior_entropy: 3.3219, relative_absolute_error: 0.9285, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.2892, root_relative_squared_error: 0.964, unweighted_recall: 0.1875,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9246, f_measure: 0.9143, kappa: 0.8108, kb_relative_information_score: 0.7085, mean_absolute_error: 0.1431, mean_prior_absolute_error: 0.4519, weighted_recall: 0.9142, number_of_instances: 699, precision: 0.9146, predictive_accuracy: 0.9142, prior_entropy: 0.9293, relative_absolute_error: 0.3166, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2756, root_relative_squared_error: 0.5798, unweighted_recall: 0.907,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5831, kappa: 0.1011, kb_relative_information_score: 0.1224, mean_absolute_error: 0.1642, mean_prior_absolute_error: 0.18, weighted_recall: 0.191, number_of_instances: 2000, predictive_accuracy: 0.191, prior_entropy: 3.3219, relative_absolute_error: 0.9125, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.2867, root_relative_squared_error: 0.9558, unweighted_recall: 0.191,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5848, kappa: 0.1, kb_relative_information_score: 0.1215, mean_absolute_error: 0.1644, mean_prior_absolute_error: 0.18, weighted_recall: 0.19, number_of_instances: 2000, predictive_accuracy: 0.19, prior_entropy: 3.3219, relative_absolute_error: 0.9133, root_mean_prior_squared_error: 0.3, root_mean_squared_error: 0.2868, root_relative_squared_error: 0.9559, unweighted_recall: 0.19,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6114, kappa: 0.2285, kb_relative_information_score: 0.1077, mean_absolute_error: 0.349, mean_prior_absolute_error: 0.3798, weighted_recall: 0.584, number_of_instances: 625, predictive_accuracy: 0.584, prior_entropy: 1.3181, relative_absolute_error: 0.919, root_mean_prior_squared_error: 0.4356, root_mean_squared_error: 0.4259, root_relative_squared_error: 0.9778, unweighted_recall: 0.4225,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5495, kappa: 0.0326, kb_relative_information_score: 0.0575, mean_absolute_error: 0.0723, mean_prior_absolute_error: 0.074, weighted_recall: 0.0718, number_of_instances: 20000, predictive_accuracy: 0.0718, prior_entropy: 4.6998, relative_absolute_error: 0.9776, root_mean_prior_squared_error: 0.1923, root_mean_squared_error: 0.1901, root_relative_squared_error: 0.9887, unweighted_recall: 0.0688,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6664, f_measure: 0.6233, kappa: 0.3396, kb_relative_information_score: 0.2118, mean_absolute_error: 0.397, mean_prior_absolute_error: 0.499, weighted_recall: 0.6605, number_of_instances: 3196, precision: 0.8015, predictive_accuracy: 0.6605, prior_entropy: 0.9986, relative_absolute_error: 0.7955, root_mean_prior_squared_error: 0.4995, root_mean_squared_error: 0.4455, root_relative_squared_error: 0.8919, unweighted_recall: 0.675,
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement…
28 runs0 likes0 downloads0 reach0 impact
Applies transformers to columns of an array or pandas DataFrame. This estimator allows different columns or column subsets of the input to be transformed separately and the features generated by each…
0 runs0 likes0 downloads0 reach0 impact
Univariate imputer for completing missing values with simple strategies. Replace missing values using a descriptive statistic (e.g. mean, median, or most frequent) along each column, or using a…
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9823, f_measure: 0.9418, kappa: 0.8833, kb_relative_information_score: 0.8214, mean_absolute_error: 0.0974, mean_prior_absolute_error: 0.499, weighted_recall: 0.9418, number_of_instances: 3196, precision: 0.9419, predictive_accuracy: 0.9418, prior_entropy: 0.9986, relative_absolute_error: 0.1953, root_mean_prior_squared_error: 0.4995, root_mean_squared_error: 0.2151, root_relative_squared_error: 0.4307, unweighted_recall: 0.9413,
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement…
1 runs0 likes0 downloads0 reach0 impact
Encode categorical features as a one-hot numeric array. The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features.…
0 runs0 likes0 downloads0 reach0 impact
Constructs a transformer from an arbitrary callable. A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function object and returns the result of this…
0 runs0 likes0 downloads0 reach0 impact
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8531, f_measure: 0.7939, kappa: 0.5378, kb_relative_information_score: 0.4144, mean_absolute_error: 0.276, mean_prior_absolute_error: 0.456, weighted_recall: 0.8052, number_of_instances: 19020, precision: 0.8093, predictive_accuracy: 0.8052, prior_entropy: 0.9355, relative_absolute_error: 0.6054, root_mean_prior_squared_error: 0.4775, root_mean_squared_error: 0.3728, root_relative_squared_error: 0.7807, unweighted_recall: 0.7486,
OVR multiclass symbolic classificator
1 runs0 likes0 downloads0 reach0 impact
Nonlinear Logistic Regressor
0 runs0 likes0 downloads0 reach0 impact
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9369, f_measure: 0.8792, kappa: 0.732, kb_relative_information_score: 0.5974, mean_absolute_error: 0.1943, mean_prior_absolute_error: 0.456, weighted_recall: 0.8811, number_of_instances: 19020, precision: 0.8808, predictive_accuracy: 0.8811, prior_entropy: 0.9355, relative_absolute_error: 0.4262, root_mean_prior_squared_error: 0.4775, root_mean_squared_error: 0.2988, root_relative_squared_error: 0.6259, unweighted_recall: 0.856,
A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive…
1 runs0 likes0 downloads0 reach0 impact
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9366, f_measure: 0.8785, kappa: 0.7302, kb_relative_information_score: 0.5973, mean_absolute_error: 0.1944, mean_prior_absolute_error: 0.456, weighted_recall: 0.8804, number_of_instances: 19020, precision: 0.8802, predictive_accuracy: 0.8804, prior_entropy: 0.9355, relative_absolute_error: 0.4263, root_mean_prior_squared_error: 0.4775, root_mean_squared_error: 0.2989, root_relative_squared_error: 0.6261, unweighted_recall: 0.8549,
0 likes - 0 downloads - 0 reach - No evaluations yet (or not applicable).
Automatically created pytorch flow.
1 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
0 likes - 0 downloads - 0 reach - No evaluations yet (or not applicable).
Automatically created pytorch flow.
1 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created pytorch flow.
0 runs0 likes0 downloads0 reach0 impact