Study
When to tune SVMs hyper-parameters via Meta-learning

When to tune SVMs hyper-parameters via Meta-learning

Created 27-06-2017 by Rafael G. Mantovani Visibility: public
Search these data sets in more detail
This is a meta-dataset which describes the SVM hyperparameter tuning problem. The target attribute indicates whether tuning is required or default hyperparameter values are enough to each dataset…
0 runs0 likes0 downloads0 reach0 impact
156 instances - 81 features - 2 classes - 0 missing values
This is a meta-dataset which describes the SVM hyperparameter tuning problem. The target attribute indicates whether tuning is required or default hyperparameter values are enough to each dataset…
0 runs0 likes0 downloads0 reach0 impact
156 instances - 91 features - 2 classes - 0 missing values
This is a meta-dataset which describes the SVM hyperparameter tuning problem. The target attribute indicates whether tuning is required or default hyperparameter values are enough to each dataset…
0 runs0 likes0 downloads0 reach0 impact
156 instances - 81 features - 2 classes - 0 missing values