OpenML
Supervised Classification on tae

Supervised Classification on tae

Task 47 Supervised Classification tae 940 runs submitted
0 likes downloaded by 1 people , 1 total downloads 0 issues
Visibility: Public
  • basic study_1 study_107 study_123 study_41 study_50 study_7 study_73 under100k under1m
Issue #Downvotes for this reason By


Metric:

940 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6594, f_measure: 0.4971, kappa: 0.2563, kb_relative_information_score: 37.9542, mean_absolute_error: 0.3723, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5017, predictive_accuracy: 0.5033, prior_entropy: 1.5845, recall: 0.5033, relative_absolute_error: 0.838, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4714, root_relative_squared_error: 1.0002, scimark_benchmark: 947.0115,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6493, f_measure: 0.5303, kappa: 0.3062, kb_relative_information_score: 12.5004, mean_absolute_error: 0.4273, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5404, predictive_accuracy: 0.5364, prior_entropy: 1.5845, recall: 0.5364, relative_absolute_error: 0.9618, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4585, root_relative_squared_error: 0.9729, scimark_benchmark: 915.3665,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7008, f_measure: 0.5044, kappa: 0.255, kb_relative_information_score: 42.2797, mean_absolute_error: 0.3535, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5063, predictive_accuracy: 0.5033, prior_entropy: 1.5845, recall: 0.5033, relative_absolute_error: 0.7957, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4685, root_relative_squared_error: 0.994, scimark_benchmark: 889.0804,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7279, f_measure: 0.5611, kappa: 0.3443, kb_relative_information_score: 55.374, mean_absolute_error: 0.3122, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5626, predictive_accuracy: 0.5629, prior_entropy: 1.5845, recall: 0.5629, relative_absolute_error: 0.7027, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4769, root_relative_squared_error: 1.0118, scimark_benchmark: 941.9089,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7437, f_measure: 0.5794, kappa: 0.3741, kb_relative_information_score: 36.3239, mean_absolute_error: 0.374, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5783, predictive_accuracy: 0.5828, prior_entropy: 1.5845, recall: 0.5828, relative_absolute_error: 0.8417, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4316, root_relative_squared_error: 0.9156, scimark_benchmark: 941.4643,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5272, f_measure: 0.2633, kappa: 0.0529, kb_relative_information_score: 16.9496, mean_absolute_error: 0.4312, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.424, predictive_accuracy: 0.3775, prior_entropy: 1.5845, recall: 0.3775, relative_absolute_error: 0.9705, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.5297, root_relative_squared_error: 1.1239, scimark_benchmark: 920.3527,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7386, f_measure: 0.5748, kappa: 0.364, kb_relative_information_score: 58.9471, mean_absolute_error: 0.3008, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5764, predictive_accuracy: 0.5762, prior_entropy: 1.5845, recall: 0.5762, relative_absolute_error: 0.6771, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.472, root_relative_squared_error: 1.0015, scimark_benchmark: 949.8861,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6525, f_measure: 0.5217, kappa: 0.2856, kb_relative_information_score: 38.576, mean_absolute_error: 0.3738, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5249, predictive_accuracy: 0.5232, prior_entropy: 1.5845, recall: 0.5232, relative_absolute_error: 0.8413, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.475, root_relative_squared_error: 1.0079, scimark_benchmark: 910.3838,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7386, f_measure: 0.5748, kappa: 0.364, kb_relative_information_score: 58.9471, mean_absolute_error: 0.3008, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5764, predictive_accuracy: 0.5762, prior_entropy: 1.5845, recall: 0.5762, relative_absolute_error: 0.6771, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.472, root_relative_squared_error: 1.0015, scimark_benchmark: 930.7121,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8052, f_measure: 0.6275, kappa: 0.4441, kb_relative_information_score: 65.9907, mean_absolute_error: 0.2858, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.6282, predictive_accuracy: 0.6291, prior_entropy: 1.5845, recall: 0.6291, relative_absolute_error: 0.6432, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4089, root_relative_squared_error: 0.8675, scimark_benchmark: 915.5859,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5989, f_measure: 0.4974, kappa: 0.246, kb_relative_information_score: 28.1238, mean_absolute_error: 0.3972, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5029, predictive_accuracy: 0.4967, prior_entropy: 1.5845, recall: 0.4967, relative_absolute_error: 0.894, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4694, root_relative_squared_error: 0.9959, scimark_benchmark: 947.034,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6143, f_measure: 0.5167, kappa: 0.2756, kb_relative_information_score: 28.0984, mean_absolute_error: 0.398, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5204, predictive_accuracy: 0.5166, prior_entropy: 1.5845, recall: 0.5166, relative_absolute_error: 0.8957, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4616, root_relative_squared_error: 0.9794, scimark_benchmark: 919.05,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5349, f_measure: 0.3671, kappa: 0.0668, kb_relative_information_score: 15.359, mean_absolute_error: 0.4269, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.3635, predictive_accuracy: 0.3775, prior_entropy: 1.5845, recall: 0.3775, relative_absolute_error: 0.9608, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4668, root_relative_squared_error: 0.9903, scimark_benchmark: 890.7836,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6135, f_measure: 0.404, kappa: 0.1555, kb_relative_information_score: 29.4223, mean_absolute_error: 0.3974, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.4673, predictive_accuracy: 0.4371, prior_entropy: 1.5845, recall: 0.4371, relative_absolute_error: 0.8943, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4982, root_relative_squared_error: 1.057, scimark_benchmark: 885.8032,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6122, f_measure: 0.4573, kappa: 0.1974, kb_relative_information_score: 23.4966, mean_absolute_error: 0.4096, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.4685, predictive_accuracy: 0.4636, prior_entropy: 1.5845, recall: 0.4636, relative_absolute_error: 0.9218, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4678, root_relative_squared_error: 0.9925, scimark_benchmark: 912.3251,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7471, f_measure: 0.5741, kappa: 0.3639, kb_relative_information_score: 59.4871, mean_absolute_error: 0.2987, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5769, predictive_accuracy: 0.5762, prior_entropy: 1.5845, recall: 0.5762, relative_absolute_error: 0.6723, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4688, root_relative_squared_error: 0.9947, scimark_benchmark: 947.4019,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7239, f_measure: 0.5413, kappa: 0.3135, kb_relative_information_score: 44.8341, mean_absolute_error: 0.3467, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5427, predictive_accuracy: 0.543, prior_entropy: 1.5845, recall: 0.543, relative_absolute_error: 0.7803, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4505, root_relative_squared_error: 0.9559, scimark_benchmark: 947.6784,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6678, f_measure: 0.4604, kappa: 0.2344, kb_relative_information_score: 34.8157, mean_absolute_error: 0.3779, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.4765, predictive_accuracy: 0.4901, prior_entropy: 1.5845, recall: 0.4901, relative_absolute_error: 0.8505, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4577, root_relative_squared_error: 0.971, scimark_benchmark: 919.186,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5686, f_measure: 0.4253, kappa: 0.1366, kb_relative_information_score: 31.8547, mean_absolute_error: 0.3841, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.4299, predictive_accuracy: 0.4238, prior_entropy: 1.5845, recall: 0.4238, relative_absolute_error: 0.8645, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.6198, root_relative_squared_error: 1.3149, scimark_benchmark: 943.359,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6767, f_measure: 0.5362, kappa: 0.3045, kb_relative_information_score: 40.8876, mean_absolute_error: 0.3664, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5361, predictive_accuracy: 0.5364, prior_entropy: 1.5845, recall: 0.5364, relative_absolute_error: 0.8248, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4667, root_relative_squared_error: 0.9902, scimark_benchmark: 922.4247,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6452, f_measure: 0.5022, kappa: 0.2769, kb_relative_information_score: 37.3039, mean_absolute_error: 0.3782, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.515, predictive_accuracy: 0.5166, prior_entropy: 1.5845, recall: 0.5166, relative_absolute_error: 0.8512, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4797, root_relative_squared_error: 1.0177, scimark_benchmark: 944.7913,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7314, f_measure: 0.556, kappa: 0.3342, kb_relative_information_score: 41.4868, mean_absolute_error: 0.357, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5563, predictive_accuracy: 0.5563, prior_entropy: 1.5845, recall: 0.5563, relative_absolute_error: 0.8035, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4419, root_relative_squared_error: 0.9376, scimark_benchmark: 943.9276,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6831, f_measure: 0.5488, kappa: 0.3242, kb_relative_information_score: 42.5054, mean_absolute_error: 0.362, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5485, predictive_accuracy: 0.5497, prior_entropy: 1.5845, recall: 0.5497, relative_absolute_error: 0.8148, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4625, root_relative_squared_error: 0.9812, scimark_benchmark: 943.6187,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6893, f_measure: 0.548, kappa: 0.326, kb_relative_information_score: 39.9755, mean_absolute_error: 0.3637, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5625, predictive_accuracy: 0.5497, prior_entropy: 1.5845, recall: 0.5497, relative_absolute_error: 0.8185, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.45, root_relative_squared_error: 0.9548, scimark_benchmark: 888.5424,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7455, f_measure: 0.5921, kappa: 0.3943, kb_relative_information_score: 37.8943, mean_absolute_error: 0.37, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5924, predictive_accuracy: 0.596, prior_entropy: 1.5845, recall: 0.596, relative_absolute_error: 0.8328, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4292, root_relative_squared_error: 0.9107, scimark_benchmark: 911.6081,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.616, f_measure: 0.3344, kappa: 0.1213, kb_relative_information_score: 17.4139, mean_absolute_error: 0.4166, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.3704, predictive_accuracy: 0.4106, prior_entropy: 1.5845, recall: 0.4106, relative_absolute_error: 0.9377, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4645, root_relative_squared_error: 0.9854, scimark_benchmark: 946.156,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6414, f_measure: 0.5265, kappa: 0.2964, kb_relative_information_score: 27.9575, mean_absolute_error: 0.3987, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5387, predictive_accuracy: 0.5298, prior_entropy: 1.5845, recall: 0.5298, relative_absolute_error: 0.8972, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4632, root_relative_squared_error: 0.9828, scimark_benchmark: 944.4876,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6274, f_measure: 0.5031, kappa: 0.2546, kb_relative_information_score: 48.2563, mean_absolute_error: 0.3311, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5032, predictive_accuracy: 0.5033, prior_entropy: 1.5845, recall: 0.5033, relative_absolute_error: 0.7453, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.5754, root_relative_squared_error: 1.2209, scimark_benchmark: 931.9984,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4861, f_measure: 0.1764, kb_relative_information_score: 0.098, mean_absolute_error: 0.4444, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.1186, predictive_accuracy: 0.3444, prior_entropy: 1.5845, recall: 0.3444, relative_absolute_error: 1.0002, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4714, root_relative_squared_error: 1.0002, scimark_benchmark: 945.8207,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5832, f_measure: 0.4545, kappa: 0.1814, kb_relative_information_score: 19.9976, mean_absolute_error: 0.4135, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.4856, predictive_accuracy: 0.457, prior_entropy: 1.5845, recall: 0.457, relative_absolute_error: 0.9306, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4693, root_relative_squared_error: 0.9956, scimark_benchmark: 2007.9892,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7279, f_measure: 0.5611, kappa: 0.3443, kb_relative_information_score: 55.374, mean_absolute_error: 0.3122, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5626, predictive_accuracy: 0.5629, prior_entropy: 1.5845, recall: 0.5629, relative_absolute_error: 0.7027, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4769, root_relative_squared_error: 1.0118, scimark_benchmark: 2015.0768,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7122, f_measure: 0.5359, kappa: 0.3042, kb_relative_information_score: 35.029, mean_absolute_error: 0.3743, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5357, predictive_accuracy: 0.5364, prior_entropy: 1.5845, recall: 0.5364, relative_absolute_error: 0.8425, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4475, root_relative_squared_error: 0.9494, scimark_benchmark: 2002.1832,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7579, f_measure: 0.6564, kappa: 0.4831, kb_relative_information_score: 81.2526, mean_absolute_error: 0.2244, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.6577, predictive_accuracy: 0.6556, prior_entropy: 1.5845, recall: 0.6556, relative_absolute_error: 0.5051, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4663, root_relative_squared_error: 0.9893, scimark_benchmark: 2016.0233,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5349, f_measure: 0.3671, kappa: 0.0668, kb_relative_information_score: 15.359, mean_absolute_error: 0.4269, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.3635, predictive_accuracy: 0.3775, prior_entropy: 1.5845, recall: 0.3775, relative_absolute_error: 0.9608, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4668, root_relative_squared_error: 0.9903, scimark_benchmark: 2021.1792,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6695, f_measure: 0.5322, kappa: 0.3059, kb_relative_information_score: 40.9731, mean_absolute_error: 0.3664, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5385, predictive_accuracy: 0.5364, prior_entropy: 1.5845, recall: 0.5364, relative_absolute_error: 0.8248, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4672, root_relative_squared_error: 0.9913, scimark_benchmark: 2008.5167,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7095, f_measure: 0.6423, kappa: 0.4637, kb_relative_information_score: 76.9706, mean_absolute_error: 0.24, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.6432, predictive_accuracy: 0.6424, prior_entropy: 1.5845, recall: 0.6424, relative_absolute_error: 0.5401, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4717, root_relative_squared_error: 1.0007, scimark_benchmark: 2004.4582,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7228, f_measure: 0.5801, kappa: 0.375, kb_relative_information_score: 37.0253, mean_absolute_error: 0.3717, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5835, predictive_accuracy: 0.5828, prior_entropy: 1.5845, recall: 0.5828, relative_absolute_error: 0.8367, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4389, root_relative_squared_error: 0.9311, scimark_benchmark: 2010.7511,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7998, f_measure: 0.6147, kappa: 0.4243, kb_relative_information_score: 64.649, mean_absolute_error: 0.2898, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.6165, predictive_accuracy: 0.6159, prior_entropy: 1.5845, recall: 0.6159, relative_absolute_error: 0.6522, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4126, root_relative_squared_error: 0.8754, scimark_benchmark: 2010.9487,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6421, f_measure: 0.5248, kappa: 0.2962, kb_relative_information_score: 25.6203, mean_absolute_error: 0.4026, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.5344, predictive_accuracy: 0.5298, prior_entropy: 1.5845, recall: 0.5298, relative_absolute_error: 0.9061, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.4615, root_relative_squared_error: 0.9791, scimark_benchmark: 2020.1275,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4956, f_measure: 0.1764, kb_relative_information_score: 13.7521, mean_absolute_error: 0.4415, mean_prior_absolute_error: 0.4443, number_of_instances: 151, precision: 0.1186, predictive_accuracy: 0.3444, prior_entropy: 1.5845, recall: 0.3444, relative_absolute_error: 0.9937, root_mean_prior_squared_error: 0.4713, root_mean_squared_error: 0.5416, root_relative_squared_error: 1.1491, scimark_benchmark: 1993.074,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
model A file containing the model built on all the input data. File (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs