OpenML
Supervised Classification on hutsof99_logis

Supervised Classification on hutsof99_logis

Task 4374 Supervised Classification hutsof99_logis 244 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

244 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7531, f_measure: 0.7198, kappa: 0.441, kb_relative_information_score: 156.4915, mean_absolute_error: 0.4042, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7226, predictive_accuracy: 0.72, prior_entropy: 0.9994, recall: 0.72, relative_absolute_error: 0.809, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4461, root_relative_squared_error: 0.8925, scimark_benchmark: 1028.5889, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7474, f_measure: 0.7142, kappa: 0.4292, kb_relative_information_score: 158.3525, mean_absolute_error: 0.4026, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7159, predictive_accuracy: 0.7143, prior_entropy: 0.9994, recall: 0.7143, relative_absolute_error: 0.8058, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4486, root_relative_squared_error: 0.8977, scimark_benchmark: 942.6843,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7226, f_measure: 0.6556, kappa: 0.3123, kb_relative_information_score: 208.4599, mean_absolute_error: 0.3518, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6572, predictive_accuracy: 0.6557, prior_entropy: 0.9994, recall: 0.6557, relative_absolute_error: 0.7042, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5384, root_relative_squared_error: 1.0772, scimark_benchmark: 1307.4861, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.758, f_measure: 0.7086, kappa: 0.4175, kb_relative_information_score: 179.6612, mean_absolute_error: 0.387, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7096, predictive_accuracy: 0.7086, prior_entropy: 0.9994, recall: 0.7086, relative_absolute_error: 0.7746, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.446, root_relative_squared_error: 0.8923, scimark_benchmark: 895.5332,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7551, f_measure: 0.7014, kappa: 0.4035, kb_relative_information_score: 178.8643, mean_absolute_error: 0.3866, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7029, predictive_accuracy: 0.7014, prior_entropy: 0.9994, recall: 0.7014, relative_absolute_error: 0.7738, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4486, root_relative_squared_error: 0.8976, scimark_benchmark: 1291.6995,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6294, f_measure: 0.6301, kappa: 0.2603, kb_relative_information_score: 140.4998, mean_absolute_error: 0.4063, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6307, predictive_accuracy: 0.63, prior_entropy: 0.9994, recall: 0.63, relative_absolute_error: 0.8132, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5291, root_relative_squared_error: 1.0587, scimark_benchmark: 869.6028,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7077, f_measure: 0.6342, kappa: 0.2694, kb_relative_information_score: 190.0688, mean_absolute_error: 0.364, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6356, predictive_accuracy: 0.6343, prior_entropy: 0.9994, recall: 0.6343, relative_absolute_error: 0.7285, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5672, root_relative_squared_error: 1.1348, scimark_benchmark: 1304.9611, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.708, f_measure: 0.65, kappa: 0.3006, kb_relative_information_score: 198.7555, mean_absolute_error: 0.3594, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6511, predictive_accuracy: 0.65, prior_entropy: 0.9994, recall: 0.65, relative_absolute_error: 0.7194, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5418, root_relative_squared_error: 1.0841, scimark_benchmark: 937.1527, usercpu_time_millis: 20, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7184, f_measure: 0.677, kappa: 0.3551, kb_relative_information_score: 217.5015, mean_absolute_error: 0.3489, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6788, predictive_accuracy: 0.6771, prior_entropy: 0.9994, recall: 0.6771, relative_absolute_error: 0.6984, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5103, root_relative_squared_error: 1.021, scimark_benchmark: 933.3136, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.729, f_measure: 0.6839, kappa: 0.3699, kb_relative_information_score: 223.7989, mean_absolute_error: 0.346, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.687, predictive_accuracy: 0.6843, prior_entropy: 0.9994, recall: 0.6843, relative_absolute_error: 0.6925, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4921, root_relative_squared_error: 0.9846, scimark_benchmark: 937.1527, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7361, f_measure: 0.694, kappa: 0.3897, kb_relative_information_score: 222.7539, mean_absolute_error: 0.3479, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6967, predictive_accuracy: 0.6943, prior_entropy: 0.9994, recall: 0.6943, relative_absolute_error: 0.6963, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4821, root_relative_squared_error: 0.9647, scimark_benchmark: 1335.643,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7677, f_measure: 0.7257, kappa: 0.452, kb_relative_information_score: 230.8218, mean_absolute_error: 0.345, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7294, predictive_accuracy: 0.7271, prior_entropy: 0.9994, recall: 0.7271, relative_absolute_error: 0.6905, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4471, root_relative_squared_error: 0.8945, scimark_benchmark: 930.5999, usercpu_time_millis: 10, usercpu_time_millis_testing: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7609, f_measure: 0.6881, kappa: 0.3757, kb_relative_information_score: 242.8835, mean_absolute_error: 0.3285, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6886, predictive_accuracy: 0.6886, prior_entropy: 0.9994, recall: 0.6886, relative_absolute_error: 0.6575, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4631, root_relative_squared_error: 0.9266, scimark_benchmark: 916.6405,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6757, f_measure: 0.6761, kappa: 0.3522, kb_relative_information_score: 247.4741, mean_absolute_error: 0.3229, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6777, predictive_accuracy: 0.6771, prior_entropy: 0.9994, recall: 0.6771, relative_absolute_error: 0.6462, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5682, root_relative_squared_error: 1.1369, scimark_benchmark: 1313.9994,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5229, f_measure: 0.416, kappa: 0.0469, kb_relative_information_score: 49.2536, mean_absolute_error: 0.4643, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6176, predictive_accuracy: 0.5357, prior_entropy: 0.9994, recall: 0.5357, relative_absolute_error: 0.9293, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.6814, root_relative_squared_error: 1.3633, scimark_benchmark: 1336.3256, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7333, f_measure: 0.7339, kappa: 0.4674, kb_relative_information_score: 327.5633, mean_absolute_error: 0.2657, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7345, predictive_accuracy: 0.7343, prior_entropy: 0.9994, recall: 0.7343, relative_absolute_error: 0.5319, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5155, root_relative_squared_error: 1.0314, scimark_benchmark: 1297.6356, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7692, f_measure: 0.7056, kappa: 0.4106, kb_relative_information_score: 221.5094, mean_absolute_error: 0.3516, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7056, predictive_accuracy: 0.7057, prior_entropy: 0.9994, recall: 0.7057, relative_absolute_error: 0.7037, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4491, root_relative_squared_error: 0.8986, scimark_benchmark: 918.6005, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6952, f_measure: 0.6956, kappa: 0.3906, kb_relative_information_score: 273.5031, mean_absolute_error: 0.3043, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6956, predictive_accuracy: 0.6957, prior_entropy: 0.9994, recall: 0.6957, relative_absolute_error: 0.6091, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5516, root_relative_squared_error: 1.1037, scimark_benchmark: 935.5075,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7916, f_measure: 0.7311, kappa: 0.4616, kb_relative_information_score: 246.2737, mean_absolute_error: 0.3361, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7316, predictive_accuracy: 0.7314, prior_entropy: 0.9994, recall: 0.7314, relative_absolute_error: 0.6727, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4357, root_relative_squared_error: 0.8718, scimark_benchmark: 1290.1085, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7549, f_measure: 0.7115, kappa: 0.423, kb_relative_information_score: 202.2767, mean_absolute_error: 0.3678, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7121, predictive_accuracy: 0.7114, prior_entropy: 0.9994, recall: 0.7114, relative_absolute_error: 0.7362, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4519, root_relative_squared_error: 0.9041, scimark_benchmark: 1319.5177,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.599, f_measure: 0.6001, kappa: 0.2, kb_relative_information_score: 138.4058, mean_absolute_error: 0.401, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6004, predictive_accuracy: 0.6, prior_entropy: 0.9994, recall: 0.6, relative_absolute_error: 0.8027, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.6292, root_relative_squared_error: 1.2589, scimark_benchmark: 1073.494,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6788, f_measure: 0.6796, kappa: 0.3614, kb_relative_information_score: 170.4819, mean_absolute_error: 0.3904, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6829, predictive_accuracy: 0.68, prior_entropy: 0.9994, recall: 0.68, relative_absolute_error: 0.7814, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4871, root_relative_squared_error: 0.9745, scimark_benchmark: 1307.3269,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6455, f_measure: 0.6625, kappa: 0.3271, kb_relative_information_score: 162.7068, mean_absolute_error: 0.3941, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6656, predictive_accuracy: 0.6629, prior_entropy: 0.9994, recall: 0.6629, relative_absolute_error: 0.7889, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5107, root_relative_squared_error: 1.0218, scimark_benchmark: 1310.3951,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6592, f_measure: 0.6597, kappa: 0.3187, kb_relative_information_score: 223.4474, mean_absolute_error: 0.34, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6599, predictive_accuracy: 0.66, prior_entropy: 0.9994, recall: 0.66, relative_absolute_error: 0.6805, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5831, root_relative_squared_error: 1.1667, scimark_benchmark: 1318.1432,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5288, f_measure: 0.5014, kappa: 0.057, kb_relative_information_score: 31.2335, mean_absolute_error: 0.4771, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.5357, predictive_accuracy: 0.5229, prior_entropy: 0.9994, recall: 0.5229, relative_absolute_error: 0.955, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.6908, root_relative_squared_error: 1.3821, scimark_benchmark: 1073.494,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6566, f_measure: 0.6456, kappa: 0.2922, kb_relative_information_score: 174.7437, mean_absolute_error: 0.38, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6471, predictive_accuracy: 0.6457, prior_entropy: 0.9994, recall: 0.6457, relative_absolute_error: 0.7607, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5374, root_relative_squared_error: 1.0753, scimark_benchmark: 1330.0803,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5953, f_measure: 0.5902, kappa: 0.1895, kb_relative_information_score: 129.3427, mean_absolute_error: 0.4071, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.5986, predictive_accuracy: 0.5929, prior_entropy: 0.9994, recall: 0.5929, relative_absolute_error: 0.8149, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.6381, root_relative_squared_error: 1.2767, scimark_benchmark: 1465.2979,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6631, f_measure: 0.6629, kappa: 0.3258, kb_relative_information_score: 227.4519, mean_absolute_error: 0.3371, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6634, predictive_accuracy: 0.6629, prior_entropy: 0.9994, recall: 0.6629, relative_absolute_error: 0.6748, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5806, root_relative_squared_error: 1.1618, scimark_benchmark: 1341.2341,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4314, f_measure: 0.3493, kb_relative_information_score: -2.1204, mean_absolute_error: 0.5007, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.2645, predictive_accuracy: 0.5143, prior_entropy: 0.9994, recall: 0.5143, relative_absolute_error: 1.0021, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5009, root_relative_squared_error: 1.0022, scimark_benchmark: 1466.6185,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6298, f_measure: 0.6357, kappa: 0.2722, kb_relative_information_score: 148.3204, mean_absolute_error: 0.4003, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.637, predictive_accuracy: 0.6357, prior_entropy: 0.9994, recall: 0.6357, relative_absolute_error: 0.8013, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5277, root_relative_squared_error: 1.0559, scimark_benchmark: 1505.597,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7653, build_cpu_time: 3.0494, build_memory: 134209498.56, f_measure: 0.6885, kappa: 0.3764, kb_relative_information_score: 206.449, mean_absolute_error: 0.3633, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6885, predictive_accuracy: 0.6886, prior_entropy: 0.9994, recall: 0.6886, relative_absolute_error: 0.7272, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4499, root_relative_squared_error: 0.9001, scimark_benchmark: 909.9339,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6335, build_cpu_time: 0.1865, build_memory: 445555903.04, f_measure: 0.6258, kappa: 0.2518, kb_relative_information_score: 177.3619, mean_absolute_error: 0.3727, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6265, predictive_accuracy: 0.6257, prior_entropy: 0.9994, recall: 0.6257, relative_absolute_error: 0.746, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.6095, root_relative_squared_error: 1.2195, scimark_benchmark: 946.2416,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6328, build_cpu_time: 0.0883, build_memory: 824256780.88, f_measure: 0.6272, kappa: 0.2541, kb_relative_information_score: 178.0302, mean_absolute_error: 0.3724, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6274, predictive_accuracy: 0.6271, prior_entropy: 0.9994, recall: 0.6271, relative_absolute_error: 0.7454, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.6085, root_relative_squared_error: 1.2175, scimark_benchmark: 945.8914,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.652, build_cpu_time: 0.0458, build_memory: 994343044.72, f_measure: 0.6286, kappa: 0.2569, kb_relative_information_score: 179.9779, mean_absolute_error: 0.3711, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6288, predictive_accuracy: 0.6286, prior_entropy: 0.9994, recall: 0.6286, relative_absolute_error: 0.7428, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.6065, root_relative_squared_error: 1.2135, scimark_benchmark: 944.5683,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6696, build_cpu_time: 0.0262, build_memory: 57127648.08, f_measure: 0.6358, kappa: 0.2711, kb_relative_information_score: 193.3572, mean_absolute_error: 0.3612, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6359, predictive_accuracy: 0.6357, prior_entropy: 0.9994, recall: 0.6357, relative_absolute_error: 0.723, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5941, root_relative_squared_error: 1.1886, scimark_benchmark: 942.9632,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6885, f_measure: 0.6867, kappa: 0.3758, kb_relative_information_score: 261.4897, mean_absolute_error: 0.3129, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6905, predictive_accuracy: 0.6871, prior_entropy: 0.9994, recall: 0.6871, relative_absolute_error: 0.6262, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5593, root_relative_squared_error: 1.1191,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6885, f_measure: 0.6867, kappa: 0.3758, kb_relative_information_score: 261.4897, mean_absolute_error: 0.3129, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6905, predictive_accuracy: 0.6871, prior_entropy: 0.9994, recall: 0.6871, relative_absolute_error: 0.6262, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.5593, root_relative_squared_error: 1.1191,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7534, build_cpu_time: 0.0878, build_memory: 1980060428.88, f_measure: 0.6901, kappa: 0.3799, kb_relative_information_score: 184.8414, mean_absolute_error: 0.381, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6904, predictive_accuracy: 0.69, prior_entropy: 0.9994, recall: 0.69, relative_absolute_error: 0.7626, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4515, root_relative_squared_error: 0.9034, scimark_benchmark: 946.3624,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7558, build_cpu_time: 0.1334, build_memory: 980488528.72, f_measure: 0.6915, kappa: 0.3831, kb_relative_information_score: 187.4713, mean_absolute_error: 0.3793, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6921, predictive_accuracy: 0.6914, prior_entropy: 0.9994, recall: 0.6914, relative_absolute_error: 0.7591, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.45, root_relative_squared_error: 0.9005, scimark_benchmark: 944.6418,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7529, build_cpu_time: 0.0591, build_memory: 1040095787.68, f_measure: 0.7029, kappa: 0.4059, kb_relative_information_score: 197.8611, mean_absolute_error: 0.3708, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7035, predictive_accuracy: 0.7029, prior_entropy: 0.9994, recall: 0.7029, relative_absolute_error: 0.7421, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4544, root_relative_squared_error: 0.9092, scimark_benchmark: 946.1052,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7529, build_cpu_time: 0.0582, build_memory: 620727731.28, f_measure: 0.7029, kappa: 0.4059, kb_relative_information_score: 197.8611, mean_absolute_error: 0.3708, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.7035, predictive_accuracy: 0.7029, prior_entropy: 0.9994, recall: 0.7029, relative_absolute_error: 0.7421, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4544, root_relative_squared_error: 0.9092, scimark_benchmark: 947.1563,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7512, build_cpu_time: 0.0188, build_memory: 207585244.16, f_measure: 0.6857, kappa: 0.3719, kb_relative_information_score: 195.9699, mean_absolute_error: 0.3716, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6868, predictive_accuracy: 0.6857, prior_entropy: 0.9994, recall: 0.6857, relative_absolute_error: 0.7437, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.456, root_relative_squared_error: 0.9123, scimark_benchmark: 929.7221,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7518, f_measure: 0.6914, kappa: 0.3834, kb_relative_information_score: 196.9254, mean_absolute_error: 0.3709, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6926, predictive_accuracy: 0.6914, prior_entropy: 0.9994, recall: 0.6914, relative_absolute_error: 0.7423, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4555, root_relative_squared_error: 0.9115,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7523, build_cpu_time: 0.0058, build_memory: 337887771.92, f_measure: 0.6957, kappa: 0.3918, kb_relative_information_score: 199.037, mean_absolute_error: 0.369, mean_prior_absolute_error: 0.4996, number_of_instances: 700, precision: 0.6966, predictive_accuracy: 0.6957, prior_entropy: 0.9994, recall: 0.6957, relative_absolute_error: 0.7386, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4565, root_relative_squared_error: 0.9133, scimark_benchmark: 944.5582,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
model A file containing the model built on all the input data. File (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs