OpenML
Supervised Classification on fri_c0_1000_5

Supervised Classification on fri_c0_1000_5

Task 3664 Supervised Classification fri_c0_1000_5 436 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
  • mythbusting_1 study_1 study_107 study_15 study_20 study_41 study_7 under100k under1m
Issue #Downvotes for this reason By


Metric:

436 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4958, f_measure: 0.3367, kb_relative_information_score: -0.0135, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.253, predictive_accuracy: 0.503, prior_entropy: 1, recall: 0.503, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, scimark_benchmark: 1358.4955,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8507, f_measure: 0.835, kappa: 0.6699, kb_relative_information_score: 620.2794, mean_absolute_error: 0.1968, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8351, predictive_accuracy: 0.835, prior_entropy: 1, recall: 0.835, relative_absolute_error: 0.3937, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3865, root_relative_squared_error: 0.773, scimark_benchmark: 1605.6303,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9569, f_measure: 0.888, kappa: 0.776, kb_relative_information_score: 773.8482, mean_absolute_error: 0.1133, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.888, predictive_accuracy: 0.888, prior_entropy: 1, recall: 0.888, relative_absolute_error: 0.2267, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3271, root_relative_squared_error: 0.6543, scimark_benchmark: 931.2336, usercpu_time_millis: 100, usercpu_time_millis_testing: 30, usercpu_time_millis_training: 70,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9512, f_measure: 0.887, kappa: 0.774, kb_relative_information_score: 769.4139, mean_absolute_error: 0.1162, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8872, predictive_accuracy: 0.887, prior_entropy: 1, recall: 0.887, relative_absolute_error: 0.2325, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3165, root_relative_squared_error: 0.633, scimark_benchmark: 945.6434, usercpu_time_millis: 150, usercpu_time_millis_testing: 50, usercpu_time_millis_training: 100,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9553, f_measure: 0.875, kappa: 0.7499, kb_relative_information_score: 723.3759, mean_absolute_error: 0.143, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8753, predictive_accuracy: 0.875, prior_entropy: 1, recall: 0.875, relative_absolute_error: 0.286, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2985, root_relative_squared_error: 0.597, scimark_benchmark: 941.7954, usercpu_time_millis: 60, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 50,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9553, f_measure: 0.875, kappa: 0.7499, kb_relative_information_score: 723.3759, mean_absolute_error: 0.143, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8753, predictive_accuracy: 0.875, prior_entropy: 1, recall: 0.875, relative_absolute_error: 0.286, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2985, root_relative_squared_error: 0.597, scimark_benchmark: 923.7642, usercpu_time_millis: 60, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 40,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9553, f_measure: 0.875, kappa: 0.7499, kb_relative_information_score: 723.3759, mean_absolute_error: 0.143, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8753, predictive_accuracy: 0.875, prior_entropy: 1, recall: 0.875, relative_absolute_error: 0.286, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2985, root_relative_squared_error: 0.597, scimark_benchmark: 894.7455, usercpu_time_millis: 60, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 50,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9544, f_measure: 0.877, kappa: 0.754, kb_relative_information_score: 743.4835, mean_absolute_error: 0.1295, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.877, predictive_accuracy: 0.877, prior_entropy: 1, recall: 0.877, relative_absolute_error: 0.2591, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3229, root_relative_squared_error: 0.6458, scimark_benchmark: 911.3823, usercpu_time_millis: 480, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 470,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9492, f_measure: 0.87, kappa: 0.74, kb_relative_information_score: 730.3671, mean_absolute_error: 0.1367, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.87, predictive_accuracy: 0.87, prior_entropy: 1, recall: 0.87, relative_absolute_error: 0.2734, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3233, root_relative_squared_error: 0.6467, scimark_benchmark: 936.6206, usercpu_time_millis: 210, usercpu_time_millis_training: 210,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9281, f_measure: 0.836, kappa: 0.672, kb_relative_information_score: 661.5092, mean_absolute_error: 0.1716, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.836, predictive_accuracy: 0.836, prior_entropy: 1, recall: 0.836, relative_absolute_error: 0.3433, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3513, root_relative_squared_error: 0.7026, scimark_benchmark: 942.1229, usercpu_time_millis: 110, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 100,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9034, f_measure: 0.8106, kappa: 0.6222, kb_relative_information_score: 604.022, mean_absolute_error: 0.2008, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8144, predictive_accuracy: 0.811, prior_entropy: 1, recall: 0.811, relative_absolute_error: 0.4016, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3814, root_relative_squared_error: 0.7629, scimark_benchmark: 922.9039, usercpu_time_millis: 70, usercpu_time_millis_training: 70,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8419, f_measure: 0.759, kappa: 0.5309, kb_relative_information_score: 495.3836, mean_absolute_error: 0.2573, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.796, predictive_accuracy: 0.765, prior_entropy: 1, recall: 0.765, relative_absolute_error: 0.5146, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4458, root_relative_squared_error: 0.8917, scimark_benchmark: 938.4278, usercpu_time_millis: 30, usercpu_time_millis_training: 30,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9526, f_measure: 0.875, kappa: 0.75, kb_relative_information_score: 713.4088, mean_absolute_error: 0.1487, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8751, predictive_accuracy: 0.875, prior_entropy: 1, recall: 0.875, relative_absolute_error: 0.2973, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3003, root_relative_squared_error: 0.6005, scimark_benchmark: 936.6206, usercpu_time_millis: 210, usercpu_time_millis_training: 210,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9504, f_measure: 0.864, kappa: 0.728, kb_relative_information_score: 645.3578, mean_absolute_error: 0.1885, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8641, predictive_accuracy: 0.864, prior_entropy: 1, recall: 0.864, relative_absolute_error: 0.377, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2994, root_relative_squared_error: 0.5988, scimark_benchmark: 947.9494, usercpu_time_millis: 30, usercpu_time_millis_training: 30,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9227, f_measure: 0.834, kappa: 0.6679, kb_relative_information_score: 538.2019, mean_absolute_error: 0.2458, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8341, predictive_accuracy: 0.834, prior_entropy: 1, recall: 0.834, relative_absolute_error: 0.4916, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3366, root_relative_squared_error: 0.6732, scimark_benchmark: 931.2336, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4958, f_measure: 0.3367, kb_relative_information_score: -0.0135, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.253, predictive_accuracy: 0.503, prior_entropy: 1, recall: 0.503, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, scimark_benchmark: 940.2922,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9203, f_measure: 0.8419, kappa: 0.6841, kb_relative_information_score: 578.0246, mean_absolute_error: 0.2243, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.843, predictive_accuracy: 0.842, prior_entropy: 1, recall: 0.842, relative_absolute_error: 0.4485, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3335, root_relative_squared_error: 0.667, scimark_benchmark: 902.4773, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9211, f_measure: 0.835, kappa: 0.67, kb_relative_information_score: 564.9126, mean_absolute_error: 0.2293, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.835, predictive_accuracy: 0.835, prior_entropy: 1, recall: 0.835, relative_absolute_error: 0.4586, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3389, root_relative_squared_error: 0.6778, scimark_benchmark: 947.9494, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9325, f_measure: 0.8519, kappa: 0.7039, kb_relative_information_score: 651.8447, mean_absolute_error: 0.1809, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8531, predictive_accuracy: 0.852, prior_entropy: 1, recall: 0.852, relative_absolute_error: 0.3618, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3181, root_relative_squared_error: 0.6363, scimark_benchmark: 930.32, usercpu_time_millis: 50, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 40,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4958, f_measure: 0.3367, kb_relative_information_score: -0.0135, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.253, predictive_accuracy: 0.503, prior_entropy: 1, recall: 0.503, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, scimark_benchmark: 932.3943,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9227, f_measure: 0.834, kappa: 0.6679, kb_relative_information_score: 538.2019, mean_absolute_error: 0.2458, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8341, predictive_accuracy: 0.834, prior_entropy: 1, recall: 0.834, relative_absolute_error: 0.4916, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3366, root_relative_squared_error: 0.6732, scimark_benchmark: 911.0478, usercpu_time_millis: 40, usercpu_time_millis_training: 40,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.3367, kb_relative_information_score: 5.9485, mean_absolute_error: 0.497, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.253, predictive_accuracy: 0.503, prior_entropy: 1, recall: 0.503, relative_absolute_error: 0.994, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.705, root_relative_squared_error: 1.41, scimark_benchmark: 901.0726, usercpu_time_millis: 10, usercpu_time_millis_testing: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8507, f_measure: 0.835, kappa: 0.6699, kb_relative_information_score: 620.2794, mean_absolute_error: 0.1968, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8351, predictive_accuracy: 0.835, prior_entropy: 1, recall: 0.835, relative_absolute_error: 0.3937, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3865, root_relative_squared_error: 0.773, scimark_benchmark: 904.3001, usercpu_time_millis: 30, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9307, f_measure: 0.851, kappa: 0.702, kb_relative_information_score: 282.6602, mean_absolute_error: 0.385, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8512, predictive_accuracy: 0.851, prior_entropy: 1, recall: 0.851, relative_absolute_error: 0.77, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3984, root_relative_squared_error: 0.7968, scimark_benchmark: 947.9494, usercpu_time_millis: 1110, usercpu_time_millis_training: 1110,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8361, f_measure: 0.7535, kappa: 0.5083, kb_relative_information_score: 187.0553, mean_absolute_error: 0.4245, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.7563, predictive_accuracy: 0.754, prior_entropy: 1, recall: 0.754, relative_absolute_error: 0.8489, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4378, root_relative_squared_error: 0.8756, scimark_benchmark: 901.0726,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8317, f_measure: 0.8315, kappa: 0.6638, kb_relative_information_score: 663.9825, mean_absolute_error: 0.168, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8353, predictive_accuracy: 0.832, prior_entropy: 1, recall: 0.832, relative_absolute_error: 0.336, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4099, root_relative_squared_error: 0.8198, scimark_benchmark: 941.7954, usercpu_time_millis: 770, usercpu_time_millis_testing: 160, usercpu_time_millis_training: 610,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.844, f_measure: 0.844, kappa: 0.688, kb_relative_information_score: 687.9838, mean_absolute_error: 0.156, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8441, predictive_accuracy: 0.844, prior_entropy: 1, recall: 0.844, relative_absolute_error: 0.312, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.395, root_relative_squared_error: 0.79, scimark_benchmark: 941.8057, usercpu_time_millis: 820, usercpu_time_millis_testing: 100, usercpu_time_millis_training: 720,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9653, f_measure: 0.889, kappa: 0.778, kb_relative_information_score: 777.3413, mean_absolute_error: 0.1115, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.889, predictive_accuracy: 0.889, prior_entropy: 1, recall: 0.889, relative_absolute_error: 0.223, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3087, root_relative_squared_error: 0.6174, scimark_benchmark: 933.8635, usercpu_time_millis: 2160, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 2150,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9047, f_measure: 0.885, kappa: 0.77, kb_relative_information_score: 769.7518, mean_absolute_error: 0.1151, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.885, predictive_accuracy: 0.885, prior_entropy: 1, recall: 0.885, relative_absolute_error: 0.2303, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3372, root_relative_squared_error: 0.6745, scimark_benchmark: 1174.6686, usercpu_time_millis: 2980, usercpu_time_millis_testing: 110, usercpu_time_millis_training: 2870,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8902, f_measure: 0.884, kappa: 0.768, kb_relative_information_score: 767.3546, mean_absolute_error: 0.1163, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.884, predictive_accuracy: 0.884, prior_entropy: 1, recall: 0.884, relative_absolute_error: 0.2327, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3402, root_relative_squared_error: 0.6803, scimark_benchmark: 770.3451, usercpu_time_millis: 3400, usercpu_time_millis_testing: 140, usercpu_time_millis_training: 3260,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9497, f_measure: 0.871, kappa: 0.742, kb_relative_information_score: 741.3009, mean_absolute_error: 0.1301, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.871, predictive_accuracy: 0.871, prior_entropy: 1, recall: 0.871, relative_absolute_error: 0.2602, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3311, root_relative_squared_error: 0.6622, scimark_benchmark: 868.2731, usercpu_time_millis: 690, usercpu_time_millis_training: 690,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8598, f_measure: 0.7615, kappa: 0.5331, kb_relative_information_score: 438.8288, mean_absolute_error: 0.2939, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.7927, predictive_accuracy: 0.767, prior_entropy: 1, recall: 0.767, relative_absolute_error: 0.5878, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.403, root_relative_squared_error: 0.806, scimark_benchmark: 902.4773, usercpu_time_millis: 100, usercpu_time_millis_training: 100,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9566, f_measure: 0.881, kappa: 0.762, kb_relative_information_score: 749.9008, mean_absolute_error: 0.1271, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.881, predictive_accuracy: 0.881, prior_entropy: 1, recall: 0.881, relative_absolute_error: 0.2541, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3035, root_relative_squared_error: 0.6071, scimark_benchmark: 902.4773, usercpu_time_millis: 380, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 370,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.922, f_measure: 0.849, kappa: 0.698, kb_relative_information_score: 544.6446, mean_absolute_error: 0.2432, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.849, predictive_accuracy: 0.849, prior_entropy: 1, recall: 0.849, relative_absolute_error: 0.4864, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.336, root_relative_squared_error: 0.6719, scimark_benchmark: 904.3001,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.844, f_measure: 0.844, kappa: 0.688, kb_relative_information_score: 687.9838, mean_absolute_error: 0.156, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8441, predictive_accuracy: 0.844, prior_entropy: 1, recall: 0.844, relative_absolute_error: 0.312, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.395, root_relative_squared_error: 0.79, scimark_benchmark: 928.3108, usercpu_time_millis: 790, usercpu_time_millis_testing: 100, usercpu_time_millis_training: 690,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8482, f_measure: 0.8479, kappa: 0.6961, kb_relative_information_score: 695.9842, mean_absolute_error: 0.152, mean_prior_absolute_error: 0.5, number_of_instances: 1000, precision: 0.8491, predictive_accuracy: 0.848, prior_entropy: 1, recall: 0.848, relative_absolute_error: 0.304, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3899, root_relative_squared_error: 0.7798, scimark_benchmark: 947.4269, usercpu_time_millis: 40, usercpu_time_millis_training: 40,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
model A file containing the model built on all the input data. File (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs