OpenML
Supervised Classification on pwLinear

Supervised Classification on pwLinear

Task 3587 Supervised Classification pwLinear 543 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
  • mythbusting_1 study_1 study_107 study_123 study_15 study_20 study_41 study_7 under100k under1m
Issue #Downvotes for this reason By


Metric:

543 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9481, build_cpu_time: 0.8607, build_memory: 948366757.6, f_measure: 0.89, kappa: 0.7798, kb_relative_information_score: 118.0031, mean_absolute_error: 0.2248, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.89, predictive_accuracy: 0.89, prior_entropy: 0.9994, recall: 0.89, relative_absolute_error: 0.4499, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3042, root_relative_squared_error: 0.6088, scimark_benchmark: 947.2295,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9488, build_cpu_time: 0.3124, build_memory: 795818260.8, f_measure: 0.885, kappa: 0.7699, kb_relative_information_score: 118.7714, mean_absolute_error: 0.2231, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8851, predictive_accuracy: 0.885, prior_entropy: 0.9994, recall: 0.885, relative_absolute_error: 0.4465, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.302, root_relative_squared_error: 0.6043, scimark_benchmark: 902.1764,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8292, build_cpu_time: 0.0042, build_memory: 664648856, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 131.9108, mean_absolute_error: 0.17, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.3403, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4123, root_relative_squared_error: 0.825, scimark_benchmark: 785.9104,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8292, build_cpu_time: 0.0053, build_memory: 602675940.8, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 131.9108, mean_absolute_error: 0.17, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.3403, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4123, root_relative_squared_error: 0.825, scimark_benchmark: 942.4281,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8292, build_cpu_time: 0.0096, build_memory: 299692802.4, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 131.9108, mean_absolute_error: 0.17, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.3403, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4123, root_relative_squared_error: 0.825, scimark_benchmark: 941.6532,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8292, build_cpu_time: 0.0129, build_memory: 1211438127.2, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 131.9108, mean_absolute_error: 0.17, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.3403, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4123, root_relative_squared_error: 0.825, scimark_benchmark: 785.9104,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8292, build_cpu_time: 0.0089, build_memory: 1272842617.6, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 131.9108, mean_absolute_error: 0.17, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.3403, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4123, root_relative_squared_error: 0.825, scimark_benchmark: 937.52,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.957, build_cpu_time: 0.1533, build_memory: 447441891.2, f_measure: 0.91, kappa: 0.8197, kb_relative_information_score: 133.6487, mean_absolute_error: 0.1812, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.9101, predictive_accuracy: 0.91, prior_entropy: 0.9994, recall: 0.91, relative_absolute_error: 0.3626, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2824, root_relative_squared_error: 0.5651, scimark_benchmark: 940.6012,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8292, build_cpu_time: 0.0179, build_memory: 533539545.6, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 131.9108, mean_absolute_error: 0.17, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.3403, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4123, root_relative_squared_error: 0.825, scimark_benchmark: 940.6012,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8292, build_cpu_time: 0.0256, build_memory: 1272924548.8, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 131.9108, mean_absolute_error: 0.17, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.3403, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4123, root_relative_squared_error: 0.825, scimark_benchmark: 942.4281,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9607, build_cpu_time: 0.0442, build_memory: 1005737231.2, f_measure: 0.8899, kappa: 0.7795, kb_relative_information_score: 132.7547, mean_absolute_error: 0.182, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8905, predictive_accuracy: 0.89, prior_entropy: 0.9994, recall: 0.89, relative_absolute_error: 0.3644, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2821, root_relative_squared_error: 0.5644, scimark_benchmark: 934.625,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7779, build_cpu_time: 0.0567, build_memory: 752256177.6, f_measure: 0.6997, kappa: 0.3987, kb_relative_information_score: 48.2498, mean_absolute_error: 0.3936, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.7, predictive_accuracy: 0.7, prior_entropy: 0.9994, recall: 0.7, relative_absolute_error: 0.788, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.4375, root_relative_squared_error: 0.8753, scimark_benchmark: 785.9104,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8921, build_cpu_time: 0.0105, build_memory: 200165721.6, f_measure: 0.86, kappa: 0.7197, kb_relative_information_score: 145.8332, mean_absolute_error: 0.1352, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.86, predictive_accuracy: 0.86, prior_entropy: 0.9994, recall: 0.86, relative_absolute_error: 0.2706, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3502, root_relative_squared_error: 0.7008, scimark_benchmark: 943.1777,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7769, build_cpu_time: 0.04, build_memory: 146983468.8, f_measure: 0.6946, kappa: 0.3885, kb_relative_information_score: 47.8807, mean_absolute_error: 0.3946, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.695, predictive_accuracy: 0.695, prior_entropy: 0.9994, recall: 0.695, relative_absolute_error: 0.7899, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.438, root_relative_squared_error: 0.8764, scimark_benchmark: 938.1585,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7769, build_cpu_time: 0.0348, build_memory: 309412316, f_measure: 0.6946, kappa: 0.3885, kb_relative_information_score: 47.8807, mean_absolute_error: 0.3946, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.695, predictive_accuracy: 0.695, prior_entropy: 0.9994, recall: 0.695, relative_absolute_error: 0.7899, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.438, root_relative_squared_error: 0.8764, scimark_benchmark: 943.4796,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7769, build_cpu_time: 0.0565, build_memory: 124633106.4, f_measure: 0.6946, kappa: 0.3885, kb_relative_information_score: 47.8807, mean_absolute_error: 0.3946, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.695, predictive_accuracy: 0.695, prior_entropy: 0.9994, recall: 0.695, relative_absolute_error: 0.7899, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.438, root_relative_squared_error: 0.8764, scimark_benchmark: 949.3678,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7601, build_cpu_time: 0.0195, build_memory: 231702979.2, f_measure: 0.6948, kappa: 0.3889, kb_relative_information_score: 59.8291, mean_absolute_error: 0.3593, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.6949, predictive_accuracy: 0.695, prior_entropy: 0.9994, recall: 0.695, relative_absolute_error: 0.7192, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.454, root_relative_squared_error: 0.9084, scimark_benchmark: 942.5344,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7601, build_cpu_time: 0.0196, build_memory: 499848562.4, f_measure: 0.6948, kappa: 0.3889, kb_relative_information_score: 59.8291, mean_absolute_error: 0.3593, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.6949, predictive_accuracy: 0.695, prior_entropy: 0.9994, recall: 0.695, relative_absolute_error: 0.7192, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.454, root_relative_squared_error: 0.9084, scimark_benchmark: 939.2194,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7601, build_cpu_time: 0.0203, build_memory: 174332732.8, f_measure: 0.6948, kappa: 0.3889, kb_relative_information_score: 59.8291, mean_absolute_error: 0.3593, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.6949, predictive_accuracy: 0.695, prior_entropy: 0.9994, recall: 0.695, relative_absolute_error: 0.7192, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.454, root_relative_squared_error: 0.9084, scimark_benchmark: 929.8459,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9529, build_cpu_time: 25.6781, build_memory: 271319741.6, f_measure: 0.8649, kappa: 0.7295, kb_relative_information_score: 137.4513, mean_absolute_error: 0.162, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8652, predictive_accuracy: 0.865, prior_entropy: 0.9994, recall: 0.865, relative_absolute_error: 0.3244, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3055, root_relative_squared_error: 0.6113, scimark_benchmark: 931.2177,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9535, build_cpu_time: 45.0774, build_memory: 153359790.4, f_measure: 0.8599, kappa: 0.7196, kb_relative_information_score: 137.1826, mean_absolute_error: 0.1627, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8601, predictive_accuracy: 0.86, prior_entropy: 0.9994, recall: 0.86, relative_absolute_error: 0.3256, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3062, root_relative_squared_error: 0.6128, scimark_benchmark: 943.8359,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.908, build_cpu_time: 0.225, build_memory: 57260278.4, f_measure: 0.8449, kappa: 0.6894, kb_relative_information_score: 129.2078, mean_absolute_error: 0.1812, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8452, predictive_accuracy: 0.845, prior_entropy: 0.9994, recall: 0.845, relative_absolute_error: 0.3627, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3628, root_relative_squared_error: 0.726, scimark_benchmark: 929.2431,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9261, build_cpu_time: 0.0203, build_memory: 1008430759.2, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 100.7728, mean_absolute_error: 0.2693, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.539, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3634, root_relative_squared_error: 0.7272, scimark_benchmark: 938.4795,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.908, build_cpu_time: 0.2684, build_memory: 1311757629.6, f_measure: 0.8449, kappa: 0.6894, kb_relative_information_score: 129.2078, mean_absolute_error: 0.1812, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8452, predictive_accuracy: 0.845, prior_entropy: 0.9994, recall: 0.845, relative_absolute_error: 0.3627, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3628, root_relative_squared_error: 0.726, scimark_benchmark: 941.4198,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9232, build_cpu_time: 0.0138, build_memory: 594604275.2, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 101.6803, mean_absolute_error: 0.2666, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.5337, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3636, root_relative_squared_error: 0.7275, scimark_benchmark: 942.728,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9244, build_cpu_time: 0.0333, build_memory: 39417607.2, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 101.7535, mean_absolute_error: 0.2664, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.5332, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3635, root_relative_squared_error: 0.7273, scimark_benchmark: 915.2996,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9125, build_cpu_time: 0.2159, build_memory: 1414234503.2, f_measure: 0.8399, kappa: 0.6795, kb_relative_information_score: 136.024, mean_absolute_error: 0.1594, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.84, predictive_accuracy: 0.84, prior_entropy: 0.9994, recall: 0.84, relative_absolute_error: 0.319, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3752, root_relative_squared_error: 0.7508, scimark_benchmark: 942.7079,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9182, build_cpu_time: 0.0056, build_memory: 2164003141.6, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 102.7462, mean_absolute_error: 0.2634, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.5272, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3648, root_relative_squared_error: 0.73, scimark_benchmark: 942.6348,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9165, build_cpu_time: 0.0018, build_memory: 1553621321.6, f_measure: 0.8298, kappa: 0.6593, kb_relative_information_score: 101.794, mean_absolute_error: 0.2662, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8303, predictive_accuracy: 0.83, prior_entropy: 0.9994, recall: 0.83, relative_absolute_error: 0.5329, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3636, root_relative_squared_error: 0.7275, scimark_benchmark: 938.259,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9582, build_cpu_time: 0.6388, build_memory: 1323434148, f_measure: 0.895, kappa: 0.7897, kb_relative_information_score: 144.0958, mean_absolute_error: 0.147, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.895, predictive_accuracy: 0.895, prior_entropy: 0.9994, recall: 0.895, relative_absolute_error: 0.2943, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2864, root_relative_squared_error: 0.5731, scimark_benchmark: 998.3701,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9599, build_cpu_time: 1.3065, build_memory: 919478900.8, f_measure: 0.8949, kappa: 0.7896, kb_relative_information_score: 142.672, mean_absolute_error: 0.1519, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8953, predictive_accuracy: 0.895, prior_entropy: 0.9994, recall: 0.895, relative_absolute_error: 0.3041, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2854, root_relative_squared_error: 0.571, scimark_benchmark: 942.3742,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9619, build_cpu_time: 2.6203, build_memory: 868234744, f_measure: 0.8949, kappa: 0.7896, kb_relative_information_score: 143.6719, mean_absolute_error: 0.1495, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8953, predictive_accuracy: 0.895, prior_entropy: 0.9994, recall: 0.895, relative_absolute_error: 0.2992, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2783, root_relative_squared_error: 0.5569, scimark_benchmark: 941.4059,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9633, build_cpu_time: 5.1099, build_memory: 799743774.4, f_measure: 0.9, kappa: 0.7997, kb_relative_information_score: 144.271, mean_absolute_error: 0.1477, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.9001, predictive_accuracy: 0.9, prior_entropy: 0.9994, recall: 0.9, relative_absolute_error: 0.2957, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2771, root_relative_squared_error: 0.5545, scimark_benchmark: 945.9825,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9629, build_cpu_time: 10.1461, build_memory: 183902011.2, f_measure: 0.9, kappa: 0.7997, kb_relative_information_score: 144.5481, mean_absolute_error: 0.1469, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.9001, predictive_accuracy: 0.9, prior_entropy: 0.9994, recall: 0.9, relative_absolute_error: 0.2941, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2772, root_relative_squared_error: 0.5546, scimark_benchmark: 931.9798,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8735, build_cpu_time: 0.9375, build_memory: 1437847441.6, f_measure: 0.865, kappa: 0.7297, kb_relative_information_score: 145.9029, mean_absolute_error: 0.1351, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.865, predictive_accuracy: 0.865, prior_entropy: 0.9994, recall: 0.865, relative_absolute_error: 0.2704, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3674, root_relative_squared_error: 0.7352, scimark_benchmark: 941.9633,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8928, build_cpu_time: 0.425, build_memory: 783046983.2, f_measure: 0.875, kappa: 0.7497, kb_relative_information_score: 150.6846, mean_absolute_error: 0.1231, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.875, predictive_accuracy: 0.875, prior_entropy: 0.9994, recall: 0.875, relative_absolute_error: 0.2464, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3487, root_relative_squared_error: 0.6977, scimark_benchmark: 941.8931,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9116, build_cpu_time: 0.216, build_memory: 54749152.8, f_measure: 0.865, kappa: 0.7298, kb_relative_information_score: 145.9185, mean_absolute_error: 0.135, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8651, predictive_accuracy: 0.865, prior_entropy: 0.9994, recall: 0.865, relative_absolute_error: 0.2702, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.3638, root_relative_squared_error: 0.7279, scimark_benchmark: 939.6491,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9238, build_cpu_time: 0.145, build_memory: 952675681.6, f_measure: 0.8699, kappa: 0.7396, kb_relative_information_score: 150.2164, mean_absolute_error: 0.1233, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8701, predictive_accuracy: 0.87, prior_entropy: 0.9994, recall: 0.87, relative_absolute_error: 0.2469, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.336, root_relative_squared_error: 0.6723, scimark_benchmark: 941.5665,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.949, build_cpu_time: 0.2934, build_memory: 3456696841.6, f_measure: 0.905, kappa: 0.8099, kb_relative_information_score: 130.6338, mean_absolute_error: 0.189, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.9051, predictive_accuracy: 0.905, prior_entropy: 0.9994, recall: 0.905, relative_absolute_error: 0.3784, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.29, root_relative_squared_error: 0.5802, scimark_benchmark: 945.2768,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9516, build_cpu_time: 0.6506, build_memory: 1596430276, f_measure: 0.91, kappa: 0.8198, kb_relative_information_score: 131.4043, mean_absolute_error: 0.188, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.91, predictive_accuracy: 0.91, prior_entropy: 0.9994, recall: 0.91, relative_absolute_error: 0.3763, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2862, root_relative_squared_error: 0.5726, scimark_benchmark: 950.6802,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9465, build_cpu_time: 0.091, build_memory: 95824078.4, f_measure: 0.8849, kappa: 0.7696, kb_relative_information_score: 136.4648, mean_absolute_error: 0.1712, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8852, predictive_accuracy: 0.885, prior_entropy: 0.9994, recall: 0.885, relative_absolute_error: 0.3426, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2874, root_relative_squared_error: 0.575, scimark_benchmark: 925.4009,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9403, build_cpu_time: 0.074, build_memory: 2442326290.4, f_measure: 0.8849, kappa: 0.7696, kb_relative_information_score: 135.3054, mean_absolute_error: 0.1738, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8852, predictive_accuracy: 0.885, prior_entropy: 0.9994, recall: 0.885, relative_absolute_error: 0.3478, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2922, root_relative_squared_error: 0.5847, scimark_benchmark: 946.8808,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9389, build_cpu_time: 0.029, build_memory: 189757549.6, f_measure: 0.8949, kappa: 0.7896, kb_relative_information_score: 136.6021, mean_absolute_error: 0.1705, mean_prior_absolute_error: 0.4996, number_of_instances: 200, precision: 0.8953, predictive_accuracy: 0.895, prior_entropy: 0.9994, recall: 0.895, relative_absolute_error: 0.3413, root_mean_prior_squared_error: 0.4998, root_mean_squared_error: 0.2938, root_relative_squared_error: 0.5879, scimark_benchmark: 945.0197,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
model A file containing the model built on all the input data. File (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs