OpenML
Supervised Classification on breast-w

Supervised Classification on breast-w

Task 1779 Supervised Classification breast-w 334 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

334 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9896, build_cpu_time: 1.5908, build_memory: 2236653569.9777, f_measure: 0.964, kappa: 0.9204, kb_relative_information_score: 3006.2511, mean_absolute_error: 0.0688, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.964, predictive_accuracy: 0.9639, prior_entropy: 0.9297, recall: 0.9639, relative_absolute_error: 0.1522, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1741, root_relative_squared_error: 0.3663, scimark_benchmark: 939.4881,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9896, build_cpu_time: 0.995, build_memory: 894585877.7041, f_measure: 0.9637, kappa: 0.9197, kb_relative_information_score: 3007.8289, mean_absolute_error: 0.0686, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9638, predictive_accuracy: 0.9637, prior_entropy: 0.9297, recall: 0.9637, relative_absolute_error: 0.1517, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1742, root_relative_squared_error: 0.3665, scimark_benchmark: 940.0535,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9893, build_cpu_time: 0.5435, build_memory: 3111584208.879, f_measure: 0.9634, kappa: 0.9191, kb_relative_information_score: 3012.9754, mean_absolute_error: 0.0676, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9635, predictive_accuracy: 0.9634, prior_entropy: 0.9297, recall: 0.9634, relative_absolute_error: 0.1497, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1745, root_relative_squared_error: 0.3671, scimark_benchmark: 947.2295,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9737, build_cpu_time: 0.0121, build_memory: 2229635828.5093, f_measure: 0.9197, kappa: 0.8208, kb_relative_information_score: 2799.6776, mean_absolute_error: 0.0896, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9203, predictive_accuracy: 0.9205, prior_entropy: 0.9297, recall: 0.9205, relative_absolute_error: 0.1982, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2339, root_relative_squared_error: 0.4921, scimark_benchmark: 942.3187,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9756, build_cpu_time: 0.0238, build_memory: 412143174.7777, f_measure: 0.919, kappa: 0.8197, kb_relative_information_score: 2800.8962, mean_absolute_error: 0.0899, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9192, predictive_accuracy: 0.9196, prior_entropy: 0.9297, recall: 0.9196, relative_absolute_error: 0.1988, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2321, root_relative_squared_error: 0.4883, scimark_benchmark: 939.4327,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9756, build_cpu_time: 0.0283, build_memory: 1276304106.4767, f_measure: 0.919, kappa: 0.8197, kb_relative_information_score: 2800.8962, mean_absolute_error: 0.0899, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9192, predictive_accuracy: 0.9196, prior_entropy: 0.9297, recall: 0.9196, relative_absolute_error: 0.1988, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2321, root_relative_squared_error: 0.4883, scimark_benchmark: 910.9043,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9781, build_cpu_time: 0.0438, build_memory: 712416508.0767, f_measure: 0.921, kappa: 0.8245, kb_relative_information_score: 2801.1875, mean_absolute_error: 0.0899, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9209, predictive_accuracy: 0.9213, prior_entropy: 0.9297, recall: 0.9213, relative_absolute_error: 0.1988, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2312, root_relative_squared_error: 0.4865, scimark_benchmark: 947.2295,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9781, build_cpu_time: 0.0403, build_memory: 1168371058.5499, f_measure: 0.921, kappa: 0.8245, kb_relative_information_score: 2801.1875, mean_absolute_error: 0.0899, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9209, predictive_accuracy: 0.9213, prior_entropy: 0.9297, recall: 0.9213, relative_absolute_error: 0.1988, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2312, root_relative_squared_error: 0.4865, scimark_benchmark: 941.6532,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9781, build_cpu_time: 0.0301, build_memory: 564850544.4578, f_measure: 0.921, kappa: 0.8245, kb_relative_information_score: 2801.1875, mean_absolute_error: 0.0899, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9209, predictive_accuracy: 0.9213, prior_entropy: 0.9297, recall: 0.9213, relative_absolute_error: 0.1988, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2312, root_relative_squared_error: 0.4865, scimark_benchmark: 899.912,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9676, build_cpu_time: 0.0131, build_memory: 271264361.5542, f_measure: 0.9562, kappa: 0.9028, kb_relative_information_score: 3148.4812, mean_absolute_error: 0.0426, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9561, predictive_accuracy: 0.9562, prior_entropy: 0.9297, recall: 0.9562, relative_absolute_error: 0.0942, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2012, root_relative_squared_error: 0.4234, scimark_benchmark: 947.3846,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.988, build_cpu_time: 33.6186, build_memory: 114997039.9977, f_measure: 0.9565, kappa: 0.9038, kb_relative_information_score: 3078.1083, mean_absolute_error: 0.0546, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9565, predictive_accuracy: 0.9565, prior_entropy: 0.9297, recall: 0.9565, relative_absolute_error: 0.1209, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1855, root_relative_squared_error: 0.3902, scimark_benchmark: 944.6023,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9879, build_cpu_time: 86.3481, build_memory: 377692795.7379, f_measure: 0.956, kappa: 0.9026, kb_relative_information_score: 3075.7915, mean_absolute_error: 0.055, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.956, predictive_accuracy: 0.9559, prior_entropy: 0.9297, recall: 0.9559, relative_absolute_error: 0.1218, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1854, root_relative_squared_error: 0.39, scimark_benchmark: 864.1117,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9872, build_cpu_time: 0.0252, build_memory: 1065930032.6959, f_measure: 0.9489, kappa: 0.8872, kb_relative_information_score: 2731.1604, mean_absolute_error: 0.1098, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9491, predictive_accuracy: 0.9488, prior_entropy: 0.9297, recall: 0.9488, relative_absolute_error: 0.243, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2019, root_relative_squared_error: 0.4249, scimark_benchmark: 945.5575,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9865, build_cpu_time: 0.0133, build_memory: 441818997.8323, f_measure: 0.9464, kappa: 0.8816, kb_relative_information_score: 2723.9445, mean_absolute_error: 0.1102, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9466, predictive_accuracy: 0.9462, prior_entropy: 0.9297, recall: 0.9462, relative_absolute_error: 0.2439, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2052, root_relative_squared_error: 0.4317, scimark_benchmark: 942.9616,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9861, build_cpu_time: 0.008, build_memory: 43091926.8074, f_measure: 0.947, kappa: 0.883, kb_relative_information_score: 2717.4243, mean_absolute_error: 0.1112, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9473, predictive_accuracy: 0.9468, prior_entropy: 0.9297, recall: 0.9468, relative_absolute_error: 0.2459, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2061, root_relative_squared_error: 0.4336, scimark_benchmark: 939.0518,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9861, build_cpu_time: 0.0058, build_memory: 714809398.5694, f_measure: 0.947, kappa: 0.883, kb_relative_information_score: 2717.4243, mean_absolute_error: 0.1112, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9473, predictive_accuracy: 0.9468, prior_entropy: 0.9297, recall: 0.9468, relative_absolute_error: 0.2459, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2061, root_relative_squared_error: 0.4336, scimark_benchmark: 929.2431,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.985, build_cpu_time: 0.0039, build_memory: 33938178.5568, f_measure: 0.9447, kappa: 0.8779, kb_relative_information_score: 2713.3045, mean_absolute_error: 0.1114, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.945, predictive_accuracy: 0.9445, prior_entropy: 0.9297, recall: 0.9445, relative_absolute_error: 0.2466, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2085, root_relative_squared_error: 0.4388, scimark_benchmark: 941.326,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9838, build_cpu_time: 0.0022, build_memory: 1868236614.4549, f_measure: 0.9408, kappa: 0.8696, kb_relative_information_score: 2702.6871, mean_absolute_error: 0.1116, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9415, predictive_accuracy: 0.9405, prior_entropy: 0.9297, recall: 0.9405, relative_absolute_error: 0.2469, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2139, root_relative_squared_error: 0.45, scimark_benchmark: 942.6348,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9907, build_cpu_time: 0.9392, build_memory: 78019638.075, f_measure: 0.9611, kappa: 0.9138, kb_relative_information_score: 3055.0928, mean_absolute_error: 0.0596, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9611, predictive_accuracy: 0.9611, prior_entropy: 0.9297, recall: 0.9611, relative_absolute_error: 0.132, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1759, root_relative_squared_error: 0.3701, scimark_benchmark: 813.0234,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9908, build_cpu_time: 2.0673, build_memory: 106975739.2824, f_measure: 0.9608, kappa: 0.9132, kb_relative_information_score: 3051.2996, mean_absolute_error: 0.0604, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9608, predictive_accuracy: 0.9608, prior_entropy: 0.9297, recall: 0.9608, relative_absolute_error: 0.1337, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1757, root_relative_squared_error: 0.3697, scimark_benchmark: 941.5509,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9911, build_cpu_time: 5.9727, build_memory: 646289202.273, f_measure: 0.9622, kappa: 0.9163, kb_relative_information_score: 3059.4601, mean_absolute_error: 0.0596, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9622, predictive_accuracy: 0.9622, prior_entropy: 0.9297, recall: 0.9622, relative_absolute_error: 0.1318, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1737, root_relative_squared_error: 0.3655, scimark_benchmark: 1234.8263,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9911, build_cpu_time: 4.1668, build_memory: 57837246.3588, f_measure: 0.9622, kappa: 0.9163, kb_relative_information_score: 3059.4847, mean_absolute_error: 0.0596, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9622, predictive_accuracy: 0.9622, prior_entropy: 0.9297, recall: 0.9622, relative_absolute_error: 0.1318, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1737, root_relative_squared_error: 0.3654, scimark_benchmark: 944.4079,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.991, build_cpu_time: 8.2619, build_memory: 105104054.5373, f_measure: 0.9622, kappa: 0.9164, kb_relative_information_score: 3062.5934, mean_absolute_error: 0.0592, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9622, predictive_accuracy: 0.9622, prior_entropy: 0.9297, recall: 0.9622, relative_absolute_error: 0.1309, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.173, root_relative_squared_error: 0.3639, scimark_benchmark: 943.992,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9911, build_cpu_time: 17.3329, build_memory: 189561110.9631, f_measure: 0.9622, kappa: 0.9164, kb_relative_information_score: 3063.5814, mean_absolute_error: 0.0591, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9622, predictive_accuracy: 0.9622, prior_entropy: 0.9297, recall: 0.9622, relative_absolute_error: 0.1307, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1726, root_relative_squared_error: 0.363, scimark_benchmark: 945.8425,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9642, build_cpu_time: 0.8425, build_memory: 194502025.9456, f_measure: 0.9626, kappa: 0.9173, kb_relative_information_score: 3191.9132, mean_absolute_error: 0.0374, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9626, predictive_accuracy: 0.9625, prior_entropy: 0.9297, recall: 0.9625, relative_absolute_error: 0.0827, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1926, root_relative_squared_error: 0.4052, scimark_benchmark: 934.1739,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9655, build_cpu_time: 0.5208, build_memory: 1103272212.475, f_measure: 0.962, kappa: 0.916, kb_relative_information_score: 3187.78, mean_absolute_error: 0.0379, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9621, predictive_accuracy: 0.9619, prior_entropy: 0.9297, recall: 0.9619, relative_absolute_error: 0.0838, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1937, root_relative_squared_error: 0.4074, scimark_benchmark: 942.4851,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9675, build_cpu_time: 0.2597, build_memory: 1391047518.0223, f_measure: 0.9594, kappa: 0.9102, kb_relative_information_score: 3169.0613, mean_absolute_error: 0.0402, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9594, predictive_accuracy: 0.9594, prior_entropy: 0.9297, recall: 0.9594, relative_absolute_error: 0.0889, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1984, root_relative_squared_error: 0.4175, scimark_benchmark: 897.921,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9676, build_cpu_time: 0.1096, build_memory: 431988869.1044, f_measure: 0.9579, kappa: 0.9069, kb_relative_information_score: 3155.0709, mean_absolute_error: 0.042, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9579, predictive_accuracy: 0.9579, prior_entropy: 0.9297, recall: 0.9579, relative_absolute_error: 0.0929, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2014, root_relative_squared_error: 0.4238, scimark_benchmark: 942.6202,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9676, build_cpu_time: 0.1564, build_memory: 731786932.1728, f_measure: 0.9579, kappa: 0.9069, kb_relative_information_score: 3155.0709, mean_absolute_error: 0.042, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9579, predictive_accuracy: 0.9579, prior_entropy: 0.9297, recall: 0.9579, relative_absolute_error: 0.0929, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.2014, root_relative_squared_error: 0.4238, scimark_benchmark: 920.6195,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9843, build_cpu_time: 0.0746, build_memory: 1059952695.2584, f_measure: 0.9591, kappa: 0.9096, kb_relative_information_score: 3024.224, mean_absolute_error: 0.0642, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9591, predictive_accuracy: 0.9591, prior_entropy: 0.9297, recall: 0.9591, relative_absolute_error: 0.142, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1824, root_relative_squared_error: 0.3837, scimark_benchmark: 938.0235,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9897, build_cpu_time: 0.7668, build_memory: 2025803314.3737, f_measure: 0.9637, kappa: 0.9197, kb_relative_information_score: 3023.5072, mean_absolute_error: 0.0657, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9638, predictive_accuracy: 0.9637, prior_entropy: 0.9297, recall: 0.9637, relative_absolute_error: 0.1454, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1748, root_relative_squared_error: 0.3678, scimark_benchmark: 942.7727,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9876, build_cpu_time: 0.2614, build_memory: 144333840.3319, f_measure: 0.9606, kappa: 0.9128, kb_relative_information_score: 2988.3949, mean_absolute_error: 0.0707, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9606, predictive_accuracy: 0.9605, prior_entropy: 0.9297, recall: 0.9605, relative_absolute_error: 0.1563, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1801, root_relative_squared_error: 0.379, scimark_benchmark: 942.8386,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9869, build_cpu_time: 0.1663, build_memory: 690340211.8112, f_measure: 0.9594, kappa: 0.9102, kb_relative_information_score: 2989.9141, mean_absolute_error: 0.0702, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9594, predictive_accuracy: 0.9594, prior_entropy: 0.9297, recall: 0.9594, relative_absolute_error: 0.1554, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1811, root_relative_squared_error: 0.3809, scimark_benchmark: 946.3726,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9862, build_cpu_time: 0.0346, build_memory: 2289028652.8, f_measure: 0.9588, kappa: 0.909, kb_relative_information_score: 2985.3162, mean_absolute_error: 0.0705, mean_prior_absolute_error: 0.452, number_of_instances: 3495, precision: 0.9589, predictive_accuracy: 0.9588, prior_entropy: 0.9297, recall: 0.9588, relative_absolute_error: 0.1559, root_mean_prior_squared_error: 0.4753, root_mean_squared_error: 0.1831, root_relative_squared_error: 0.3851, scimark_benchmark: 897.3255,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
model A file containing the model built on all the input data. File (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs