Data
audiology

audiology

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Machine Learning Medicine study_1 study_41 study_76 uci
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Professor Jergen at Baylor College of Medicine Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)) Please cite: Bareiss, E. Ray, & Porter, Bruce (1987). Protos: An Exemplar-Based Learning Apprentice. In the Proceedings of the 4th International Workshop on Machine Learning, 12-23, Irvine, CA: Morgan Kaufmann Audiology Database This database is a standardized version of the original audiology database (see audiology.* in this directory). The non-standard set of attributes have been converted to a standard set of attributes according to the rules that follow. * Each property that appears anywhere in the original .data or .test file has been represented as a separate attribute in this file. * A property such as age_gt_60 is represented as a boolean attribute with values f and t. * In most cases, a property of the form x(y) is represented as a discrete attribute x() whose possible values are the various y's; air() is an example. There are two exceptions: when only one value of y appears anywhere, e.g. static(normal). In this case, x_y appears as a boolean attribute. when one case can have two or more values of x, e.g. history(..). All possible values of history are treated as separate boolean attributes. * Since boolean attributes only appear as positive conditions, each boolean attribute is assumed to be false unless noted as true. The value of multi-value discrete attributes taken as unknown ("?") unless a value is specified. * The original case identifications, p1 to p200 in the .data file and t1 to t26 in the .test file, have been added as a unique identifier attribute. [Note: in the original .data file, p165 has a repeated specification of o_ar_c(normal); p166 has repeated specification of speech(normal) and conflicting values air(moderate) and air(mild). No other problems with the original data were noted.] ### Attribute Information: age_gt_60: f, t. air(): mild,moderate,severe,normal,profound. airBoneGap: f, t. ar_c(): normal,elevated,absent. ar_u(): normal,absent,elevated. bone(): mild,moderate,normal,unmeasured. boneAbnormal: f, t. bser(): normal,degraded. history_buzzing: f, t. history_dizziness: f, t. history_fluctuating: f, t. history_fullness: f, t. history_heredity: f, t. history_nausea: f, t. history_noise: f, t. history_recruitment: f, t. history_ringing: f, t. history_roaring: f, t. history_vomiting: f, t. late_wave_poor: f, t. m_at_2k: f, t. m_cond_lt_1k: f, t. m_gt_1k: f, t. m_m_gt_2k: f, t. m_m_sn: f, t. m_m_sn_gt_1k: f, t. m_m_sn_gt_2k: f, t. m_m_sn_gt_500: f, t. m_p_sn_gt_2k: f, t. m_s_gt_500: f, t. m_s_sn: f, t. m_s_sn_gt_1k: f, t. m_s_sn_gt_2k: f, t. m_s_sn_gt_3k: f, t. m_s_sn_gt_4k: f, t. m_sn_2_3k: f, t. m_sn_gt_1k: f, t. m_sn_gt_2k: f, t. m_sn_gt_3k: f, t. m_sn_gt_4k: f, t. m_sn_gt_500: f, t. m_sn_gt_6k: f, t. m_sn_lt_1k: f, t. m_sn_lt_2k: f, t. m_sn_lt_3k: f, t. middle_wave_poor: f, t. mod_gt_4k: f, t. mod_mixed: f, t. mod_s_mixed: f, t. mod_s_sn_gt_500: f, t. mod_sn: f, t. mod_sn_gt_1k: f, t. mod_sn_gt_2k: f, t. mod_sn_gt_3k: f, t. mod_sn_gt_4k: f, t. mod_sn_gt_500: f, t. notch_4k: f, t. notch_at_4k: f, t. o_ar_c(): normal,elevated,absent. o_ar_u(): normal,absent,elevated. s_sn_gt_1k: f, t. s_sn_gt_2k: f, t. s_sn_gt_4k: f, t. speech(): normal,good,very_good,very_poor,poor,unmeasured. static_normal: f, t. tymp(): a,as,b,ad,c. viith_nerve_signs: f, t. wave_V_delayed: f, t. waveform_ItoV_prolonged: f, t. indentifier (unique for each instance) class: cochlear_unknown,mixed_cochlear_age_fixation,poss_central mixed_cochlear_age_otitis_media,mixed_poss_noise_om, cochlear_age,normal_ear,cochlear_poss_noise,cochlear_age_and_noise, acoustic_neuroma,mixed_cochlear_unk_ser_om,conductive_discontinuity, retrocochlear_unknown,conductive_fixation,bells_palsy, cochlear_noise_and_heredity,mixed_cochlear_unk_fixation, otitis_media,possible_menieres,possible_brainstem_disorder, cochlear_age_plus_poss_menieres,mixed_cochlear_age_s_om, mixed_cochlear_unk_discontinuity,mixed_poss_central_om

70 features

class (target)nominal24 unique values
0 missing
age_gt_60nominal2 unique values
0 missing
airnominal5 unique values
0 missing
airBoneGapnominal2 unique values
0 missing
ar_cnominal3 unique values
4 missing
ar_unominal3 unique values
3 missing
bonenominal4 unique values
75 missing
boneAbnormalnominal2 unique values
0 missing
bsernominal2 unique values
222 missing
history_buzzingnominal2 unique values
0 missing
history_dizzinessnominal2 unique values
0 missing
history_fluctuatingnominal2 unique values
0 missing
history_fullnessnominal2 unique values
0 missing
history_hereditynominal2 unique values
0 missing
history_nauseanominal2 unique values
0 missing
history_noisenominal2 unique values
0 missing
history_recruitmentnominal2 unique values
0 missing
history_ringingnominal2 unique values
0 missing
history_roaringnominal2 unique values
0 missing
history_vomitingnominal2 unique values
0 missing
late_wave_poornominal2 unique values
0 missing
m_at_2knominal2 unique values
0 missing
m_cond_lt_1knominal2 unique values
0 missing
m_gt_1knominal2 unique values
0 missing
m_m_gt_2knominal2 unique values
0 missing
m_m_snnominal2 unique values
0 missing
m_m_sn_gt_1knominal2 unique values
0 missing
m_m_sn_gt_2knominal2 unique values
0 missing
m_m_sn_gt_500nominal2 unique values
0 missing
m_p_sn_gt_2knominal2 unique values
0 missing
m_s_gt_500nominal2 unique values
0 missing
m_s_snnominal2 unique values
0 missing
m_s_sn_gt_1knominal2 unique values
0 missing
m_s_sn_gt_2knominal2 unique values
0 missing
m_s_sn_gt_3knominal2 unique values
0 missing
m_s_sn_gt_4knominal2 unique values
0 missing
m_sn_2_3knominal2 unique values
0 missing
m_sn_gt_1knominal2 unique values
0 missing
m_sn_gt_2knominal2 unique values
0 missing
m_sn_gt_3knominal2 unique values
0 missing
m_sn_gt_4knominal2 unique values
0 missing
m_sn_gt_500nominal2 unique values
0 missing
m_sn_gt_6knominal2 unique values
0 missing
m_sn_lt_1knominal2 unique values
0 missing
m_sn_lt_2knominal2 unique values
0 missing
m_sn_lt_3knominal2 unique values
0 missing
middle_wave_poornominal2 unique values
0 missing
mod_gt_4knominal2 unique values
0 missing
mod_mixednominal2 unique values
0 missing
mod_s_mixednominal2 unique values
0 missing
mod_s_sn_gt_500nominal2 unique values
0 missing
mod_snnominal2 unique values
0 missing
mod_sn_gt_1knominal2 unique values
0 missing
mod_sn_gt_2knominal2 unique values
0 missing
mod_sn_gt_3knominal2 unique values
0 missing
mod_sn_gt_4knominal2 unique values
0 missing
mod_sn_gt_500nominal2 unique values
0 missing
notch_4knominal2 unique values
0 missing
notch_at_4knominal2 unique values
0 missing
o_ar_cnominal3 unique values
5 missing
o_ar_unominal3 unique values
2 missing
s_sn_gt_1knominal2 unique values
0 missing
s_sn_gt_2knominal2 unique values
0 missing
s_sn_gt_4knominal2 unique values
0 missing
speechnominal6 unique values
6 missing
static_normalnominal2 unique values
0 missing
tympnominal5 unique values
0 missing
viith_nerve_signsnominal2 unique values
0 missing
wave_V_delayednominal2 unique values
0 missing
waveform_ItoV_prolongednominal2 unique values
0 missing

107 properties

226
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
24
Number of distinct values of the target attribute (if it is nominal).
317
Number of missing values in the dataset.
222
Number of instances with at least one value missing.
0
Number of numeric attributes.
70
Number of nominal attributes.
0.07
Second quartile (Median) of entropy among attributes.
0.3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
25.22
Percentage of instances belonging to the most frequent class.
Mean standard deviation of attributes of the numeric type.
0.04
Minimal entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
3.42
Entropy of the target attribute values.
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
57
Number of instances belonging to the most frequent class.
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.17
Maximum entropy among attributes.
Minimum of means among attributes of the numeric type.
0.05
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.54
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
0.01
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
2
The minimal number of distinct values among attributes of the nominal type.
87.14
Percentage of binary attributes.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.31
Number of attributes divided by the number of instances.
0.9
Maximum mutual information between the nominal attributes and the target attribute.
Minimum skewness among attributes of the numeric type.
98.23
Percentage of instances having missing values.
0.3
Third quartile of entropy among attributes.
0.39
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
24.87
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
24
The maximum number of distinct values among attributes of the nominal type.
Minimum standard deviation of attributes of the numeric type.
2
Percentage of missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.32
Average class difference between consecutive instances.
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
0.44
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
Third quartile of means among attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.26
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
1
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
0.14
Third quartile of mutual information between the nominal attributes and the target attribute.
0.27
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.39
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.32
Average entropy of the attributes.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.04
First quartile of entropy among attributes.
Third quartile of skewness among attributes of the numeric type.
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
0.38
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.26
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.27
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.39
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.14
Average mutual information between the nominal attributes and the target attribute.
61
Number of binary attributes.
0.02
First quartile of mutual information between the nominal attributes and the target attribute.
0.3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.31
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
First quartile of skewness among attributes of the numeric type.
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
2.71
Standard deviation of the number of distinct values among attributes of the nominal type.
0.26
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.54
Average number of distinct values among the attributes of the nominal type.
First quartile of standard deviation of attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.27
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.

28 tasks

6189 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
326 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
293 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
182 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
31 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: Leave one out - evaluation_measure: predictive_accuracy - target_feature: class
181 runs - estimation_procedure: 10 times 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
77 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
24 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task