Data
WorldHappinessReport2019

WorldHappinessReport2019

active ARFF CC0PublicDomain Visibility: public Uploaded 23-03-2022 by Onur Yildirim
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Computer Systems Machine Learning
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
ThedatahasbeenreleasedbySDSNandextractedbyPromptCloudscustomwebcrawlingsolutionContextTheWorldHappinessReportisalandmarksurveyofthestateofglobalhappinessthatranks156countriesbyhowhappytheircitizensperceivethemselvestobeThisyearsWorldHappinessReportfocusesonhappinessandthecommunityhowhappinesshasevolvedoverthepastdozenyearswithafocusonthetechnologiessocialnormsconflictsandgovernmentpoliciesthathavedriventhosechangesContentWhatisDystopiaDystopiaisanimaginarycountrythathastheworldsleasthappypeopleThepurposeinestablishingDystopiaistohaveabenchmarkagainstwhichallcountriescanbefavorablycomparednocountryperformsmorepoorlythanDystopiaintermsofeachofthesixkeyvariablesthusallowingeachsubbartobeofpositiveorzeroinsixinstanceswidthThelowestscoresobservedforthesixkeyvariablesthereforecharacterizeDystopiaSincelifewouldbeveryunpleasantinacountrywiththeworldslowestincomeslowestlifeexpectancylowestgenerositymostcorruptionleastfreedomandleastsocialsupportitisreferredtoasDystopiaincontrasttoUtopiaWhataretheresidualsTheresidualsorunexplainedcomponentsdifferforeachcountryreflectingtheextenttowhichthesixvariableseitheroverorunderexplainaverage20162018lifeevaluationsTheseresidualshaveanaveragevalueofapproximatelyzerooverthewholesetofcountriesFigure27showstheaverageresidualforeachcountryiftheequationinTable21isappliedtoaverage20162018dataforthesixvariablesinthatcountryWecombinetheseresidualswiththeestimateforlifeevaluationsinDystopiasothatthecombinedbarwillalwayshavepositivevaluesAscanbeseeninFigure27althoughsomelifeevaluationresidualsarequitelargeoccasionallyexceedingonepointonthescalefrom0to10theyarealwaysmuchsmallerthanthecalculatedvalueinDystopiawheretheaveragelifeisratedat188onthe0to10scaleTable7oftheonlineStatisticalAppendix1forChapter2putstheDystopiaplusresidualblockattheleftsideandalsodrawstheDystopialinemakingiteasytocomparethesignsandsizesoftheresidualsindifferentcountriesWhydoweusethesesixfactorstoexplainlifeevaluationsThevariablesusedreflectwhathasbeenbroadlyfoundintheresearchliteraturetobeimportantinexplainingnationalleveldifferencesinlifeevaluationsSomeimportantvariablessuchasunemploymentorinequalitydonotappearbecausecomparableinternationaldataarenotyetavailableforthefullsampleofcountriesThevariablesareintendedtoillustrateimportantlinesofcorrelationratherthantoreflectcleancausalestimatessincesomeofthedataaredrawnfromthesamesurveysourcessomearecorrelatedwitheachotherorwithotherimportantfactorsforwhichwedonothavemeasuresandinseveralinstancestherearelikelytobetwowayrelationsbetweenlifeevaluationsandthechosenvariablesforexamplehealthypeopleareoverallhappierbutasChapter4intheWorldHappinessReport2013demonstratedhappierpeopleareoverallhealthierInStatisticalAppendix1ofWorldHappinessReport2018weassessedthepossibleimportanceofusingexplanatorydatafromthesamepeoplewhoselifeevaluationsarebeingexplainedWedidthisbyrandomlydividingthesamplesintotwogroupsandusingtheaveragevaluesforegfreedomgleanedfromonegrouptoexplainthelifeevaluationsoftheothergroupThisloweredtheeffectsbutonlyveryslightlyeg2to3assuringusthatusingdatafromthesameindividualsisnotseriouslyaffectingtheresultsDatasourcehttpworldhappinessreported2019MoresuchdatasetscanbedownloadedfromDataStock

13 features

Modelstring1038 unique values
0 missing
Release_datenumeric14 unique values
0 missing
Max_resolutionnumeric99 unique values
0 missing
Low_resolutionnumeric70 unique values
0 missing
Effective_pixelsnumeric16 unique values
0 missing
Zoom_wide_(W)numeric25 unique values
0 missing
Zoom_tele_(T)numeric100 unique values
0 missing
Normal_focus_rangenumeric32 unique values
0 missing
Macro_focus_rangenumeric29 unique values
1 missing
Storage_includednumeric44 unique values
2 missing
Weight_(inc._batteries)numeric237 unique values
2 missing
Dimensionsnumeric101 unique values
2 missing
Pricenumeric43 unique values
0 missing

19 properties

1038
Number of instances (rows) of the dataset.
13
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
7
Number of missing values in the dataset.
2
Number of instances with at least one value missing.
12
Number of numeric attributes.
0
Number of nominal attributes.
0.01
Number of attributes divided by the number of instances.
92.31
Percentage of numeric attributes.
Percentage of instances belonging to the most frequent class.
0
Percentage of nominal attributes.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0.19
Percentage of instances having missing values.
Average class difference between consecutive instances.
0.05
Percentage of missing values.

0 tasks

Define a new task