Probability calibration with isotonic regression or logistic regression. The calibration is based on the :term:`decision_function` method of the `base_estimator` if it exists, else on…
66 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
66 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
1 runs0 likes0 downloads0 reach0 impact
Probability calibration with isotonic regression or logistic regression. The calibration is based on the :term:`decision_function` method of the `base_estimator` if it exists, else on…
21 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
21 runs0 likes0 downloads0 reach0 impact
Standardize features by removing the mean and scaling to unit variance The standard score of a sample `x` is calculated as: z = (x - u) / s where `u` is the mean of the training samples or zero if…
0 runs0 likes0 downloads0 reach0 impact
C-Support Vector Classification. The implementation is based on libsvm. The fit time scales at least quadratically with the number of samples and may be impractical beyond tens of thousands of…
0 runs0 likes0 downloads0 reach0 impact
Probability calibration with isotonic regression or sigmoid. See glossary entry for :term:`cross-validation estimator`. With this class, the base_estimator is fit on the train set of the…
1 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
3 runs0 likes0 downloads0 reach0 impact
Standardize features by removing the mean and scaling to unit variance The standard score of a sample `x` is calculated as: z = (x - u) / s where `u` is the mean of the training samples or zero if…
0 runs0 likes0 downloads0 reach0 impact
Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the…
1 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and…
129 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more…
772 runs0 likes0 downloads0 reach207 impact
Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and…
603 runs0 likes0 downloads0 reach7 impact
Histogram-based Gradient Boosting Classification Tree. This estimator is much faster than :class:`GradientBoostingClassifier` for big datasets (n_samples…
1 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more…
369 runs0 likes1 downloads1 reach0 impact
Histogram-based Gradient Boosting Classification Tree. This estimator is much faster than :class:`GradientBoostingClassifier` for big datasets (n_samples…
0 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more…
1 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
4 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and…
1 runs0 likes0 downloads0 reach0 impact
Histogram-based Gradient Boosting Classification Tree. This estimator is much faster than :class:`GradientBoostingClassifier` for big datasets (n_samples…
0 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more…
1 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and…
1 runs0 likes0 downloads0 reach0 impact
Histogram-based Gradient Boosting Classification Tree. This estimator is much faster than :class:`GradientBoostingClassifier` for big datasets (n_samples…
1 runs0 likes0 downloads0 reach0 impact