Task
Supervised Data Stream Classification on BNG(kr-vs-kp,10000,10)

Supervised Data Stream Classification on BNG(kr-vs-kp,10000,10)

Task 7355 Supervised Data Stream Classification BNG(kr-vs-kp,10000,10) 29 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

29 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9793, f_measure: 0.9369, kappa: 0.8737, kb_relative_information_score: 838146.9044, mean_absolute_error: 0.0859, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.937, predictive_accuracy: 0.9369, prior_entropy: 1, recall: 0.9369, relative_absolute_error: 0.1717, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2221, root_relative_squared_error: 0.4442,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9815, f_measure: 0.9351, kappa: 0.8701, kb_relative_information_score: 766851.4549, mean_absolute_error: 0.1289, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9354, predictive_accuracy: 0.9351, prior_entropy: 1, recall: 0.9351, relative_absolute_error: 0.2579, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2272, root_relative_squared_error: 0.4544,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9966, f_measure: 0.974, kappa: 0.9478, kb_relative_information_score: 698499.9111, mean_absolute_error: 0.1778, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.974, predictive_accuracy: 0.974, prior_entropy: 1, recall: 0.974, relative_absolute_error: 0.3556, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2187, root_relative_squared_error: 0.4373,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9808, f_measure: 0.9403, kappa: 0.8804, kb_relative_information_score: 848121.3097, mean_absolute_error: 0.0805, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9403, predictive_accuracy: 0.9403, prior_entropy: 1, recall: 0.9403, relative_absolute_error: 0.1609, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2169, root_relative_squared_error: 0.4338,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8865, f_measure: 0.8121, kappa: 0.6234, kb_relative_information_score: 403734.7006, mean_absolute_error: 0.3168, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8122, predictive_accuracy: 0.8122, prior_entropy: 1, recall: 0.8122, relative_absolute_error: 0.6335, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3776, root_relative_squared_error: 0.7553,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9893, f_measure: 0.9521, kappa: 0.904, kb_relative_information_score: 848812.8904, mean_absolute_error: 0.0829, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9521, predictive_accuracy: 0.9521, prior_entropy: 1, recall: 0.9521, relative_absolute_error: 0.1658, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1914, root_relative_squared_error: 0.3828,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8418, f_measure: 0.7648, kappa: 0.5302, kb_relative_information_score: 469954.3851, mean_absolute_error: 0.2718, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7673, predictive_accuracy: 0.7647, prior_entropy: 1, recall: 0.7647, relative_absolute_error: 0.5435, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4173, root_relative_squared_error: 0.8347,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9101, f_measure: 0.8253, kappa: 0.6499, kb_relative_information_score: 566001.6589, mean_absolute_error: 0.2267, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8253, predictive_accuracy: 0.8253, prior_entropy: 1, recall: 0.8253, relative_absolute_error: 0.4535, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3494, root_relative_squared_error: 0.6988,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9737, f_measure: 0.9147, kappa: 0.8292, kb_relative_information_score: 662087.303, mean_absolute_error: 0.1857, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9148, predictive_accuracy: 0.9147, prior_entropy: 1, recall: 0.9147, relative_absolute_error: 0.3715, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2689, root_relative_squared_error: 0.5378,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.781, f_measure: 0.725, kappa: 0.4585, kb_relative_information_score: 293928.0843, mean_absolute_error: 0.3651, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7416, predictive_accuracy: 0.7271, prior_entropy: 1, recall: 0.7271, relative_absolute_error: 0.7302, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4254, root_relative_squared_error: 0.8509,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9186, f_measure: 0.8689, kappa: 0.7376, kb_relative_information_score: 731560.1127, mean_absolute_error: 0.1348, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8696, predictive_accuracy: 0.8688, prior_entropy: 1, recall: 0.8688, relative_absolute_error: 0.2697, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3458, root_relative_squared_error: 0.6916,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4996, f_measure: 0.5005, kappa: -0.0009, kb_relative_information_score: 1048, mean_absolute_error: 0.4995, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5005, predictive_accuracy: 0.5005, prior_entropy: 1, recall: 0.5005, relative_absolute_error: 0.999, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.7067, root_relative_squared_error: 1.4135,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9889, f_measure: 0.9509, kappa: 0.9016, kb_relative_information_score: 817720.752, mean_absolute_error: 0.1014, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9512, predictive_accuracy: 0.9509, prior_entropy: 1, recall: 0.9509, relative_absolute_error: 0.2028, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1986, root_relative_squared_error: 0.3972,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8526, f_measure: 0.7968, kappa: 0.5926, kb_relative_information_score: 520803.0472, mean_absolute_error: 0.2474, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7972, predictive_accuracy: 0.7971, prior_entropy: 1, recall: 0.7971, relative_absolute_error: 0.4948, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3965, root_relative_squared_error: 0.7929,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4978, f_measure: 0.3579, kappa: -0, kb_relative_information_score: 2705.17, mean_absolute_error: 0.499, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.4698, predictive_accuracy: 0.5219, prior_entropy: 1, recall: 0.5219, relative_absolute_error: 0.9981, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4995, root_relative_squared_error: 0.9991,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9737, f_measure: 0.9147, kappa: 0.8292, kb_relative_information_score: 662087.303, mean_absolute_error: 0.1857, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9148, predictive_accuracy: 0.9147, prior_entropy: 1, recall: 0.9147, relative_absolute_error: 0.3715, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2689, root_relative_squared_error: 0.5378,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9952, f_measure: 0.9707, kappa: 0.9413, kb_relative_information_score: 881740.1866, mean_absolute_error: 0.0668, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9707, predictive_accuracy: 0.9707, prior_entropy: 1, recall: 0.9707, relative_absolute_error: 0.1336, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1566, root_relative_squared_error: 0.3132,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7321, f_measure: 0.7256, kappa: 0.458, kb_relative_information_score: 454317.7999, mean_absolute_error: 0.2728, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.739, predictive_accuracy: 0.7272, prior_entropy: 1, recall: 0.7272, relative_absolute_error: 0.5457, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5219, root_relative_squared_error: 1.0437,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9521, f_measure: 0.8842, kappa: 0.7681, kb_relative_information_score: 678525.8533, mean_absolute_error: 0.1711, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8844, predictive_accuracy: 0.8842, prior_entropy: 1, recall: 0.8842, relative_absolute_error: 0.3423, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2912, root_relative_squared_error: 0.5824,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9291, f_measure: 0.8488, kappa: 0.697, kb_relative_information_score: 608749.0573, mean_absolute_error: 0.2059, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8488, predictive_accuracy: 0.8488, prior_entropy: 1, recall: 0.8488, relative_absolute_error: 0.4119, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3269, root_relative_squared_error: 0.6539,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8556, f_measure: 0.8264, kappa: 0.652, kb_relative_information_score: 641973.106, mean_absolute_error: 0.1808, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8264, predictive_accuracy: 0.8264, prior_entropy: 1, recall: 0.8264, relative_absolute_error: 0.3616, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3996, root_relative_squared_error: 0.7992,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9858, f_measure: 0.9459, kappa: 0.8917, kb_relative_information_score: 800884.1671, mean_absolute_error: 0.1099, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9461, predictive_accuracy: 0.9459, prior_entropy: 1, recall: 0.9459, relative_absolute_error: 0.2198, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2107, root_relative_squared_error: 0.4214,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9362, f_measure: 0.8852, kappa: 0.77, kb_relative_information_score: 752482.5054, mean_absolute_error: 0.1258, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8854, predictive_accuracy: 0.8851, prior_entropy: 1, recall: 0.8851, relative_absolute_error: 0.2516, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3032, root_relative_squared_error: 0.6064,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9813, f_measure: 0.9432, kappa: 0.8861, kb_relative_information_score: 849775.4863, mean_absolute_error: 0.0803, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9432, predictive_accuracy: 0.9431, prior_entropy: 1, recall: 0.9431, relative_absolute_error: 0.1606, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.213, root_relative_squared_error: 0.4261,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8591, f_measure: 0.8591, kappa: 0.7177, kb_relative_information_score: 718026, mean_absolute_error: 0.141, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8592, predictive_accuracy: 0.859, prior_entropy: 1, recall: 0.859, relative_absolute_error: 0.282, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3755, root_relative_squared_error: 0.751,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9737, f_measure: 0.9148, kappa: 0.8294, kb_relative_information_score: 662516.8496, mean_absolute_error: 0.1854, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9149, predictive_accuracy: 0.9148, prior_entropy: 1, recall: 0.9148, relative_absolute_error: 0.3709, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2689, root_relative_squared_error: 0.5378,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9808, f_measure: 0.9403, kappa: 0.8804, kb_relative_information_score: 848121.3097, mean_absolute_error: 0.0805, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9403, predictive_accuracy: 0.9403, prior_entropy: 1, recall: 0.9403, relative_absolute_error: 0.1609, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2169, root_relative_squared_error: 0.4338,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8261, f_measure: 0.8265, kappa: 0.6522, kb_relative_information_score: 652922, mean_absolute_error: 0.1735, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8265, predictive_accuracy: 0.8265, prior_entropy: 1, recall: 0.8265, relative_absolute_error: 0.3471, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4166, root_relative_squared_error: 0.8332,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8781, f_measure: 0.7886, kappa: 0.5762, kb_relative_information_score: 483545.3635, mean_absolute_error: 0.2686, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7887, predictive_accuracy: 0.7887, prior_entropy: 1, recall: 0.7887, relative_absolute_error: 0.5373, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3788, root_relative_squared_error: 0.7576,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs