Task
Supervised Data Stream Classification on BNG(kr-vs-kp,10000,5)

Supervised Data Stream Classification on BNG(kr-vs-kp,10000,5)

Task 7354 Supervised Data Stream Classification BNG(kr-vs-kp,10000,5) 29 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

29 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.987, f_measure: 0.9458, kappa: 0.8915, kb_relative_information_score: 825282.8795, mean_absolute_error: 0.0951, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.946, predictive_accuracy: 0.9458, prior_entropy: 1, recall: 0.9458, relative_absolute_error: 0.1902, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2044, root_relative_squared_error: 0.4088,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8615, f_measure: 0.8508, kappa: 0.7009, kb_relative_information_score: 690673.7454, mean_absolute_error: 0.1564, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8508, predictive_accuracy: 0.8508, prior_entropy: 1, recall: 0.8508, relative_absolute_error: 0.3128, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3795, root_relative_squared_error: 0.7589,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9865, f_measure: 0.9518, kappa: 0.9035, kb_relative_information_score: 878431.9782, mean_absolute_error: 0.0644, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9518, predictive_accuracy: 0.9518, prior_entropy: 1, recall: 0.9518, relative_absolute_error: 0.1288, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1954, root_relative_squared_error: 0.3908,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9829, f_measure: 0.9464, kappa: 0.8927, kb_relative_information_score: 861388.9884, mean_absolute_error: 0.0738, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9465, predictive_accuracy: 0.9464, prior_entropy: 1, recall: 0.9464, relative_absolute_error: 0.1476, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2068, root_relative_squared_error: 0.4136,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7763, f_measure: 0.7153, kappa: 0.4313, kb_relative_information_score: 262941.9259, mean_absolute_error: 0.3809, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7174, predictive_accuracy: 0.7152, prior_entropy: 1, recall: 0.7152, relative_absolute_error: 0.7618, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4338, root_relative_squared_error: 0.8676,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.989, f_measure: 0.9521, kappa: 0.904, kb_relative_information_score: 822296.0805, mean_absolute_error: 0.0991, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9526, predictive_accuracy: 0.952, prior_entropy: 1, recall: 0.952, relative_absolute_error: 0.1981, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1962, root_relative_squared_error: 0.3924,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8659, f_measure: 0.81, kappa: 0.6191, kb_relative_information_score: 547646.9217, mean_absolute_error: 0.234, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8104, predictive_accuracy: 0.8102, prior_entropy: 1, recall: 0.8102, relative_absolute_error: 0.468, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3841, root_relative_squared_error: 0.7681,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9969, f_measure: 0.9751, kappa: 0.9501, kb_relative_information_score: 724413.9497, mean_absolute_error: 0.163, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9751, predictive_accuracy: 0.9751, prior_entropy: 1, recall: 0.9751, relative_absolute_error: 0.3259, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2074, root_relative_squared_error: 0.4147,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9298, f_measure: 0.8515, kappa: 0.7024, kb_relative_information_score: 605180.6107, mean_absolute_error: 0.2086, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8516, predictive_accuracy: 0.8516, prior_entropy: 1, recall: 0.8516, relative_absolute_error: 0.4172, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3253, root_relative_squared_error: 0.6506,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9428, f_measure: 0.8967, kappa: 0.7931, kb_relative_information_score: 776850.8827, mean_absolute_error: 0.1134, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8968, predictive_accuracy: 0.8967, prior_entropy: 1, recall: 0.8967, relative_absolute_error: 0.2269, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2888, root_relative_squared_error: 0.5776,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9093, f_measure: 0.8393, kappa: 0.6779, kb_relative_information_score: 440891.88, mean_absolute_error: 0.2996, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8399, predictive_accuracy: 0.8396, prior_entropy: 1, recall: 0.8396, relative_absolute_error: 0.5991, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3612, root_relative_squared_error: 0.7223,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9331, f_measure: 0.8859, kappa: 0.7715, kb_relative_information_score: 765387.0782, mean_absolute_error: 0.118, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8865, predictive_accuracy: 0.8858, prior_entropy: 1, recall: 0.8858, relative_absolute_error: 0.236, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3213, root_relative_squared_error: 0.6426,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9919, f_measure: 0.9593, kappa: 0.9185, kb_relative_information_score: 877034.2504, mean_absolute_error: 0.0671, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9594, predictive_accuracy: 0.9593, prior_entropy: 1, recall: 0.9593, relative_absolute_error: 0.1343, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.176, root_relative_squared_error: 0.3521,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8889, f_measure: 0.809, kappa: 0.6174, kb_relative_information_score: 538648.7224, mean_absolute_error: 0.2397, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8092, predictive_accuracy: 0.8089, prior_entropy: 1, recall: 0.8089, relative_absolute_error: 0.4794, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3705, root_relative_squared_error: 0.7409,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9331, f_measure: 0.8556, kappa: 0.7107, kb_relative_information_score: 629092.4007, mean_absolute_error: 0.1949, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8557, predictive_accuracy: 0.8556, prior_entropy: 1, recall: 0.8556, relative_absolute_error: 0.3899, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3216, root_relative_squared_error: 0.6432,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9867, f_measure: 0.9531, kappa: 0.906, kb_relative_information_score: 878734.9088, mean_absolute_error: 0.0646, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9531, predictive_accuracy: 0.9531, prior_entropy: 1, recall: 0.9531, relative_absolute_error: 0.1292, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1937, root_relative_squared_error: 0.3874,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4996, f_measure: 0.5005, kappa: -0.0009, kb_relative_information_score: 1048, mean_absolute_error: 0.4995, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5005, predictive_accuracy: 0.5005, prior_entropy: 1, recall: 0.5005, relative_absolute_error: 0.999, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.7067, root_relative_squared_error: 1.4135,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7138, f_measure: 0.7134, kappa: 0.4267, kb_relative_information_score: 426616, mean_absolute_error: 0.2867, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7144, predictive_accuracy: 0.7133, prior_entropy: 1, recall: 0.7133, relative_absolute_error: 0.5734, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5354, root_relative_squared_error: 1.0709,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8722, f_measure: 0.8721, kappa: 0.7439, kb_relative_information_score: 744188, mean_absolute_error: 0.1279, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8722, predictive_accuracy: 0.8721, prior_entropy: 1, recall: 0.8721, relative_absolute_error: 0.2558, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3576, root_relative_squared_error: 0.7153,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4978, f_measure: 0.3579, kappa: -0, kb_relative_information_score: 2705.17, mean_absolute_error: 0.499, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.4698, predictive_accuracy: 0.5219, prior_entropy: 1, recall: 0.5219, relative_absolute_error: 0.9981, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4995, root_relative_squared_error: 0.9991,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9575, f_measure: 0.8958, kappa: 0.7912, kb_relative_information_score: 702528.8413, mean_absolute_error: 0.159, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8958, predictive_accuracy: 0.8957, prior_entropy: 1, recall: 0.8957, relative_absolute_error: 0.3181, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2796, root_relative_squared_error: 0.5593,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9684, f_measure: 0.9055, kappa: 0.8107, kb_relative_information_score: 646976.9195, mean_absolute_error: 0.193, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9056, predictive_accuracy: 0.9056, prior_entropy: 1, recall: 0.9056, relative_absolute_error: 0.386, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2779, root_relative_squared_error: 0.5557,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9955, f_measure: 0.9715, kappa: 0.9429, kb_relative_information_score: 896173.8434, mean_absolute_error: 0.0581, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9715, predictive_accuracy: 0.9715, prior_entropy: 1, recall: 0.9715, relative_absolute_error: 0.1163, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1514, root_relative_squared_error: 0.3028,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9855, f_measure: 0.9461, kappa: 0.8921, kb_relative_information_score: 814259.1496, mean_absolute_error: 0.1021, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9462, predictive_accuracy: 0.9461, prior_entropy: 1, recall: 0.9461, relative_absolute_error: 0.2042, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2072, root_relative_squared_error: 0.4144,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9817, f_measure: 0.9363, kappa: 0.8724, kb_relative_information_score: 788296.2544, mean_absolute_error: 0.1166, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9365, predictive_accuracy: 0.9363, prior_entropy: 1, recall: 0.9363, relative_absolute_error: 0.2333, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2215, root_relative_squared_error: 0.4429,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9684, f_measure: 0.9052, kappa: 0.8099, kb_relative_information_score: 647288.069, mean_absolute_error: 0.1928, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9053, predictive_accuracy: 0.9052, prior_entropy: 1, recall: 0.9052, relative_absolute_error: 0.3856, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2779, root_relative_squared_error: 0.5558,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9865, f_measure: 0.9518, kappa: 0.9035, kb_relative_information_score: 878431.9782, mean_absolute_error: 0.0644, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9518, predictive_accuracy: 0.9518, prior_entropy: 1, recall: 0.9518, relative_absolute_error: 0.1288, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1954, root_relative_squared_error: 0.3908,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8502, f_measure: 0.8508, kappa: 0.701, kb_relative_information_score: 701838, mean_absolute_error: 0.1491, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8509, predictive_accuracy: 0.8509, prior_entropy: 1, recall: 0.8509, relative_absolute_error: 0.2982, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3861, root_relative_squared_error: 0.7722,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9005, f_measure: 0.8165, kappa: 0.6321, kb_relative_information_score: 527931.5666, mean_absolute_error: 0.2477, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8165, predictive_accuracy: 0.8166, prior_entropy: 1, recall: 0.8166, relative_absolute_error: 0.4955, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3576, root_relative_squared_error: 0.7153,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs