Task
Supervised Data Stream Classification on BNG(kr-vs-kp,5000,10)

Supervised Data Stream Classification on BNG(kr-vs-kp,5000,10)

Task 7352 Supervised Data Stream Classification BNG(kr-vs-kp,5000,10) 29 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

29 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.927, f_measure: 0.8583, kappa: 0.7161, kb_relative_information_score: 690755.8538, mean_absolute_error: 0.1579, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8583, predictive_accuracy: 0.8584, prior_entropy: 1, recall: 0.8584, relative_absolute_error: 0.3159, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3367, root_relative_squared_error: 0.6734,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9456, f_measure: 0.8736, kappa: 0.7466, kb_relative_information_score: 652693.155, mean_absolute_error: 0.1845, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8736, predictive_accuracy: 0.8736, prior_entropy: 1, recall: 0.8736, relative_absolute_error: 0.3691, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3024, root_relative_squared_error: 0.6048,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9003, f_measure: 0.8486, kappa: 0.6965, kb_relative_information_score: 692096.1661, mean_absolute_error: 0.1544, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8486, predictive_accuracy: 0.8486, prior_entropy: 1, recall: 0.8486, relative_absolute_error: 0.3089, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3722, root_relative_squared_error: 0.7444,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8457, f_measure: 0.7917, kappa: 0.5823, kb_relative_information_score: 509769.2534, mean_absolute_error: 0.2529, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7922, predictive_accuracy: 0.792, prior_entropy: 1, recall: 0.792, relative_absolute_error: 0.5057, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4023, root_relative_squared_error: 0.8047,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9819, f_measure: 0.9339, kappa: 0.8676, kb_relative_information_score: 799868.809, mean_absolute_error: 0.1088, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9339, predictive_accuracy: 0.9339, prior_entropy: 1, recall: 0.9339, relative_absolute_error: 0.2176, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2229, root_relative_squared_error: 0.4458,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9868, f_measure: 0.9455, kappa: 0.8909, kb_relative_information_score: 796164.1143, mean_absolute_error: 0.1131, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9457, predictive_accuracy: 0.9455, prior_entropy: 1, recall: 0.9455, relative_absolute_error: 0.2262, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.21, root_relative_squared_error: 0.42,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8469, f_measure: 0.7674, kappa: 0.5346, kb_relative_information_score: 473414.7485, mean_absolute_error: 0.2704, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7684, predictive_accuracy: 0.7673, prior_entropy: 1, recall: 0.7673, relative_absolute_error: 0.5408, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4112, root_relative_squared_error: 0.8225,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4996, f_measure: 0.5005, kappa: -0.0009, kb_relative_information_score: 1048, mean_absolute_error: 0.4995, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5005, predictive_accuracy: 0.5005, prior_entropy: 1, recall: 0.5005, relative_absolute_error: 0.999, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.7067, root_relative_squared_error: 1.4135,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9953, f_measure: 0.9685, kappa: 0.9369, kb_relative_information_score: 660255.8362, mean_absolute_error: 0.1986, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9685, predictive_accuracy: 0.9685, prior_entropy: 1, recall: 0.9685, relative_absolute_error: 0.3973, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2368, root_relative_squared_error: 0.4736,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9738, f_measure: 0.9258, kappa: 0.8512, kb_relative_information_score: 811025.7737, mean_absolute_error: 0.0999, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9258, predictive_accuracy: 0.9258, prior_entropy: 1, recall: 0.9258, relative_absolute_error: 0.1999, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.24, root_relative_squared_error: 0.4799,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9798, f_measure: 0.9303, kappa: 0.8603, kb_relative_information_score: 751926.9585, mean_absolute_error: 0.1368, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9303, predictive_accuracy: 0.9303, prior_entropy: 1, recall: 0.9303, relative_absolute_error: 0.2736, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2345, root_relative_squared_error: 0.4689,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8005, f_measure: 0.7391, kappa: 0.4769, kb_relative_information_score: 311619.3086, mean_absolute_error: 0.3576, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7394, predictive_accuracy: 0.7395, prior_entropy: 1, recall: 0.7395, relative_absolute_error: 0.7151, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4208, root_relative_squared_error: 0.8417,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9709, f_measure: 0.9202, kappa: 0.84, kb_relative_information_score: 801778.3029, mean_absolute_error: 0.1043, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9202, predictive_accuracy: 0.9202, prior_entropy: 1, recall: 0.9202, relative_absolute_error: 0.2085, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2495, root_relative_squared_error: 0.4989,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8397, f_measure: 0.8056, kappa: 0.6104, kb_relative_information_score: 596130.1372, mean_absolute_error: 0.2047, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8078, predictive_accuracy: 0.8063, prior_entropy: 1, recall: 0.8063, relative_absolute_error: 0.4094, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4142, root_relative_squared_error: 0.8283,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7374, f_measure: 0.7377, kappa: 0.4741, kb_relative_information_score: 476210.8277, mean_absolute_error: 0.2619, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7382, predictive_accuracy: 0.7381, prior_entropy: 1, recall: 0.7381, relative_absolute_error: 0.5238, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5112, root_relative_squared_error: 1.0224,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.85, f_measure: 0.8504, kappa: 0.7002, kb_relative_information_score: 700956, mean_absolute_error: 0.1495, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8504, predictive_accuracy: 0.8505, prior_entropy: 1, recall: 0.8505, relative_absolute_error: 0.299, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3867, root_relative_squared_error: 0.7734,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8733, f_measure: 0.791, kappa: 0.5811, kb_relative_information_score: 478562.1633, mean_absolute_error: 0.2718, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7911, predictive_accuracy: 0.7911, prior_entropy: 1, recall: 0.7911, relative_absolute_error: 0.5435, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3815, root_relative_squared_error: 0.7631,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9728, f_measure: 0.9138, kappa: 0.8273, kb_relative_information_score: 653656.6526, mean_absolute_error: 0.1906, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9138, predictive_accuracy: 0.9138, prior_entropy: 1, recall: 0.9138, relative_absolute_error: 0.3812, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2714, root_relative_squared_error: 0.5427,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8438, f_measure: 0.7701, kappa: 0.5392, kb_relative_information_score: 333518.164, mean_absolute_error: 0.3505, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7704, predictive_accuracy: 0.7704, prior_entropy: 1, recall: 0.7704, relative_absolute_error: 0.701, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4053, root_relative_squared_error: 0.8106,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9267, f_measure: 0.8473, kappa: 0.6939, kb_relative_information_score: 607494.4082, mean_absolute_error: 0.2064, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8474, predictive_accuracy: 0.8474, prior_entropy: 1, recall: 0.8474, relative_absolute_error: 0.4128, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3295, root_relative_squared_error: 0.659,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9838, f_measure: 0.9398, kappa: 0.8794, kb_relative_information_score: 784139.7459, mean_absolute_error: 0.1186, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9398, predictive_accuracy: 0.9398, prior_entropy: 1, recall: 0.9398, relative_absolute_error: 0.2373, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2202, root_relative_squared_error: 0.4404,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9738, f_measure: 0.9301, kappa: 0.8599, kb_relative_information_score: 806889.2639, mean_absolute_error: 0.1038, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9301, predictive_accuracy: 0.9301, prior_entropy: 1, recall: 0.9301, relative_absolute_error: 0.2076, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2364, root_relative_squared_error: 0.4729,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9293, f_measure: 0.8755, kappa: 0.7504, kb_relative_information_score: 730023.579, mean_absolute_error: 0.1373, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8755, predictive_accuracy: 0.8755, prior_entropy: 1, recall: 0.8755, relative_absolute_error: 0.2746, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3151, root_relative_squared_error: 0.6302,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4978, f_measure: 0.3579, kappa: -0, kb_relative_information_score: 2705.17, mean_absolute_error: 0.499, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.4698, predictive_accuracy: 0.5219, prior_entropy: 1, recall: 0.5219, relative_absolute_error: 0.9981, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4995, root_relative_squared_error: 0.9991,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9942, f_measure: 0.9664, kappa: 0.9326, kb_relative_information_score: 857017.8372, mean_absolute_error: 0.0809, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9664, predictive_accuracy: 0.9664, prior_entropy: 1, recall: 0.9664, relative_absolute_error: 0.1619, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1695, root_relative_squared_error: 0.339,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9728, f_measure: 0.9137, kappa: 0.8271, kb_relative_information_score: 654358.1571, mean_absolute_error: 0.1902, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9138, predictive_accuracy: 0.9138, prior_entropy: 1, recall: 0.9138, relative_absolute_error: 0.3803, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2713, root_relative_squared_error: 0.5426,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9709, f_measure: 0.9202, kappa: 0.84, kb_relative_information_score: 801778.3029, mean_absolute_error: 0.1043, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9202, predictive_accuracy: 0.9202, prior_entropy: 1, recall: 0.9202, relative_absolute_error: 0.2085, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2495, root_relative_squared_error: 0.4989,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7912, f_measure: 0.7921, kappa: 0.5832, kb_relative_information_score: 584576, mean_absolute_error: 0.2077, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7923, predictive_accuracy: 0.7923, prior_entropy: 1, recall: 0.7923, relative_absolute_error: 0.4154, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4558, root_relative_squared_error: 0.9115,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8106, f_measure: 0.728, kappa: 0.4552, kb_relative_information_score: 362057.8196, mean_absolute_error: 0.3292, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7308, predictive_accuracy: 0.7294, prior_entropy: 1, recall: 0.7294, relative_absolute_error: 0.6583, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4264, root_relative_squared_error: 0.8529,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs