Task
Supervised Data Stream Classification on BNG(kr-vs-kp,1000,1)

Supervised Data Stream Classification on BNG(kr-vs-kp,1000,1)

Task 7347 Supervised Data Stream Classification BNG(kr-vs-kp,1000,1) 29 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

29 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.3579, kb_relative_information_score: 43750, mean_absolute_error: 0.4781, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.2724, predictive_accuracy: 0.5219, prior_entropy: 1, recall: 0.5219, relative_absolute_error: 0.9563, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6915, root_relative_squared_error: 1.3829,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9815, f_measure: 0.9434, kappa: 0.8867, kb_relative_information_score: 854790.887, mean_absolute_error: 0.0771, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9434, predictive_accuracy: 0.9434, prior_entropy: 1, recall: 0.9434, relative_absolute_error: 0.1542, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2122, root_relative_squared_error: 0.4245,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8774, f_measure: 0.7944, kappa: 0.5905, kb_relative_information_score: 521591.4247, mean_absolute_error: 0.2471, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7996, predictive_accuracy: 0.7946, prior_entropy: 1, recall: 0.7946, relative_absolute_error: 0.4941, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3866, root_relative_squared_error: 0.7732,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9024, f_measure: 0.8195, kappa: 0.6384, kb_relative_information_score: 545190.7526, mean_absolute_error: 0.2379, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8196, predictive_accuracy: 0.8195, prior_entropy: 1, recall: 0.8195, relative_absolute_error: 0.4758, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3562, root_relative_squared_error: 0.7124,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7323, f_measure: 0.7261, kappa: 0.459, kb_relative_information_score: 455178.8044, mean_absolute_error: 0.2724, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7393, predictive_accuracy: 0.7276, prior_entropy: 1, recall: 0.7276, relative_absolute_error: 0.5448, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5216, root_relative_squared_error: 1.0432,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9188, f_measure: 0.868, kappa: 0.7358, kb_relative_information_score: 730280.717, mean_absolute_error: 0.1354, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8687, predictive_accuracy: 0.8679, prior_entropy: 1, recall: 0.8679, relative_absolute_error: 0.2709, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3462, root_relative_squared_error: 0.6923,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8866, f_measure: 0.8122, kappa: 0.6235, kb_relative_information_score: 404106.0798, mean_absolute_error: 0.3166, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8123, predictive_accuracy: 0.8123, prior_entropy: 1, recall: 0.8123, relative_absolute_error: 0.6331, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3775, root_relative_squared_error: 0.755,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9813, f_measure: 0.9443, kappa: 0.8884, kb_relative_information_score: 852891.3969, mean_absolute_error: 0.0786, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9443, predictive_accuracy: 0.9443, prior_entropy: 1, recall: 0.9443, relative_absolute_error: 0.1573, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2115, root_relative_squared_error: 0.423,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9361, f_measure: 0.8853, kappa: 0.7704, kb_relative_information_score: 752199.4132, mean_absolute_error: 0.126, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8856, predictive_accuracy: 0.8853, prior_entropy: 1, recall: 0.8853, relative_absolute_error: 0.2519, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3032, root_relative_squared_error: 0.6064,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9966, f_measure: 0.9738, kappa: 0.9476, kb_relative_information_score: 698301.5184, mean_absolute_error: 0.1779, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9738, predictive_accuracy: 0.9738, prior_entropy: 1, recall: 0.9738, relative_absolute_error: 0.3559, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2186, root_relative_squared_error: 0.4372,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9821, f_measure: 0.9363, kappa: 0.8724, kb_relative_information_score: 768120.2707, mean_absolute_error: 0.1284, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9366, predictive_accuracy: 0.9362, prior_entropy: 1, recall: 0.9362, relative_absolute_error: 0.2567, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2259, root_relative_squared_error: 0.4519,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.989, f_measure: 0.9509, kappa: 0.9016, kb_relative_information_score: 818575.1819, mean_absolute_error: 0.1009, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9512, predictive_accuracy: 0.9509, prior_entropy: 1, recall: 0.9509, relative_absolute_error: 0.2018, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1981, root_relative_squared_error: 0.3962,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4978, f_measure: 0.3579, kappa: -0, kb_relative_information_score: 2705.17, mean_absolute_error: 0.499, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.4698, predictive_accuracy: 0.5219, prior_entropy: 1, recall: 0.5219, relative_absolute_error: 0.9981, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4995, root_relative_squared_error: 0.9991,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4996, f_measure: 0.5005, kappa: -0.0009, kb_relative_information_score: 1048, mean_absolute_error: 0.4995, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5005, predictive_accuracy: 0.5005, prior_entropy: 1, recall: 0.5005, relative_absolute_error: 0.999, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.7067, root_relative_squared_error: 1.4135,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9801, f_measure: 0.9392, kappa: 0.8781, kb_relative_information_score: 843325.9833, mean_absolute_error: 0.0831, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9392, predictive_accuracy: 0.9391, prior_entropy: 1, recall: 0.9391, relative_absolute_error: 0.1663, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2189, root_relative_squared_error: 0.4379,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.782, f_measure: 0.7253, kappa: 0.4592, kb_relative_information_score: 294546.5102, mean_absolute_error: 0.3648, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7421, predictive_accuracy: 0.7275, prior_entropy: 1, recall: 0.7275, relative_absolute_error: 0.7297, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4251, root_relative_squared_error: 0.8503,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.974, f_measure: 0.9153, kappa: 0.8304, kb_relative_information_score: 663626.6876, mean_absolute_error: 0.1849, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9154, predictive_accuracy: 0.9153, prior_entropy: 1, recall: 0.9153, relative_absolute_error: 0.3699, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2682, root_relative_squared_error: 0.5364,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9303, f_measure: 0.8508, kappa: 0.7011, kb_relative_information_score: 613757.7692, mean_absolute_error: 0.2033, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8509, predictive_accuracy: 0.8508, prior_entropy: 1, recall: 0.8508, relative_absolute_error: 0.4066, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3253, root_relative_squared_error: 0.6506,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9522, f_measure: 0.8842, kappa: 0.7681, kb_relative_information_score: 678756.6037, mean_absolute_error: 0.171, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8844, predictive_accuracy: 0.8842, prior_entropy: 1, recall: 0.8842, relative_absolute_error: 0.342, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2912, root_relative_squared_error: 0.5824,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9859, f_measure: 0.9458, kappa: 0.8915, kb_relative_information_score: 800360.9039, mean_absolute_error: 0.1102, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.946, predictive_accuracy: 0.9458, prior_entropy: 1, recall: 0.9458, relative_absolute_error: 0.2204, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2108, root_relative_squared_error: 0.4216,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8529, f_measure: 0.7969, kappa: 0.5929, kb_relative_information_score: 522781.7346, mean_absolute_error: 0.2463, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7973, predictive_accuracy: 0.7972, prior_entropy: 1, recall: 0.7972, relative_absolute_error: 0.4925, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3964, root_relative_squared_error: 0.7928,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8587, f_measure: 0.8586, kappa: 0.7167, kb_relative_information_score: 717036, mean_absolute_error: 0.1415, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8588, predictive_accuracy: 0.8585, prior_entropy: 1, recall: 0.8585, relative_absolute_error: 0.283, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3761, root_relative_squared_error: 0.7523,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8581, f_measure: 0.827, kappa: 0.6534, kb_relative_information_score: 642170.189, mean_absolute_error: 0.1809, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.827, predictive_accuracy: 0.827, prior_entropy: 1, recall: 0.827, relative_absolute_error: 0.3617, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3951, root_relative_squared_error: 0.7901,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9895, f_measure: 0.9522, kappa: 0.9042, kb_relative_information_score: 850024.7527, mean_absolute_error: 0.0822, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9522, predictive_accuracy: 0.9522, prior_entropy: 1, recall: 0.9522, relative_absolute_error: 0.1644, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1907, root_relative_squared_error: 0.3814,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9952, f_measure: 0.9705, kappa: 0.941, kb_relative_information_score: 882345.9196, mean_absolute_error: 0.0663, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9706, predictive_accuracy: 0.9705, prior_entropy: 1, recall: 0.9705, relative_absolute_error: 0.1326, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1569, root_relative_squared_error: 0.3138,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9739, f_measure: 0.9154, kappa: 0.8306, kb_relative_information_score: 663966.708, mean_absolute_error: 0.1847, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9155, predictive_accuracy: 0.9154, prior_entropy: 1, recall: 0.9154, relative_absolute_error: 0.3694, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2682, root_relative_squared_error: 0.5364,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9815, f_measure: 0.9434, kappa: 0.8867, kb_relative_information_score: 854790.887, mean_absolute_error: 0.0771, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9434, predictive_accuracy: 0.9434, prior_entropy: 1, recall: 0.9434, relative_absolute_error: 0.1542, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2122, root_relative_squared_error: 0.4245,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8265, f_measure: 0.8268, kappa: 0.6529, kb_relative_information_score: 653558, mean_absolute_error: 0.1732, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.8268, predictive_accuracy: 0.8268, prior_entropy: 1, recall: 0.8268, relative_absolute_error: 0.3464, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4162, root_relative_squared_error: 0.8324,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.878, f_measure: 0.7886, kappa: 0.5762, kb_relative_information_score: 483922.2414, mean_absolute_error: 0.2684, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.7886, predictive_accuracy: 0.7887, prior_entropy: 1, recall: 0.7887, relative_absolute_error: 0.5367, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3789, root_relative_squared_error: 0.7579,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs