Task
Supervised Data Stream Classification on BNG(anneal.ORIG,5000,1)

Supervised Data Stream Classification on BNG(anneal.ORIG,5000,1)

Task 7341 Supervised Data Stream Classification BNG(anneal.ORIG,5000,1) 28 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

28 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9705, f_measure: 0.914, kappa: 0.7878, kb_relative_information_score: 886227.2075, mean_absolute_error: 0.0446, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9129, predictive_accuracy: 0.9184, prior_entropy: 2.585, recall: 0.9184, relative_absolute_error: 0.1606, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1445, root_relative_squared_error: 0.3877,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4998, f_measure: 0.0221, kappa: -0.0004, kb_relative_information_score: 17901.6702, mean_absolute_error: 0.2971, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.0124, predictive_accuracy: 0.1086, prior_entropy: 2.585, recall: 0.1086, relative_absolute_error: 1.0697, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.5451, root_relative_squared_error: 1.4627,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4995, f_measure: 0.0221, kappa: -0.0003, kb_relative_information_score: 18096.3753, mean_absolute_error: 0.2972, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.0124, predictive_accuracy: 0.1085, prior_entropy: 2.585, recall: 0.1085, relative_absolute_error: 1.0699, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.5438, root_relative_squared_error: 1.4592,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5044, f_measure: 0.0187, kappa: 0.001, kb_relative_information_score: -81005.8881, mean_absolute_error: 0.327, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.7131, predictive_accuracy: 0.0186, prior_entropy: 2.585, recall: 0.0186, relative_absolute_error: 1.1771, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.5704, root_relative_squared_error: 1.5306,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9462, f_measure: 0.9036, kappa: 0.7594, kb_relative_information_score: 880120.5461, mean_absolute_error: 0.044, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9031, predictive_accuracy: 0.9044, prior_entropy: 2.585, recall: 0.9044, relative_absolute_error: 0.1584, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1599, root_relative_squared_error: 0.4291,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5004, f_measure: 0.0221, kappa: -0.0003, kb_relative_information_score: 17645.668, mean_absolute_error: 0.2972, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.0124, predictive_accuracy: 0.1083, prior_entropy: 2.585, recall: 0.1083, relative_absolute_error: 1.07, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.5449, root_relative_squared_error: 1.4622,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9701, f_measure: 0.9149, kappa: 0.7918, kb_relative_information_score: 888019.3903, mean_absolute_error: 0.0445, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9145, predictive_accuracy: 0.92, prior_entropy: 2.585, recall: 0.92, relative_absolute_error: 0.16, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1425, root_relative_squared_error: 0.3824,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9704, f_measure: 0.9206, kappa: 0.806, kb_relative_information_score: 896301.8994, mean_absolute_error: 0.0406, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.92, predictive_accuracy: 0.9246, prior_entropy: 2.585, recall: 0.9246, relative_absolute_error: 0.146, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1388, root_relative_squared_error: 0.3726,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4995, f_measure: 0.5966, kappa: -0.0008, kb_relative_information_score: 555599.1671, mean_absolute_error: 0.1345, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.5966, predictive_accuracy: 0.5966, prior_entropy: 2.585, recall: 0.5966, relative_absolute_error: 0.484, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.3667, root_relative_squared_error: 0.9839,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7784, f_measure: 0.7545, kappa: 0.4073, kb_relative_information_score: 731680.2995, mean_absolute_error: 0.0981, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.7054, predictive_accuracy: 0.8113, prior_entropy: 2.585, recall: 0.8113, relative_absolute_error: 0.3532, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.2247, root_relative_squared_error: 0.6029,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9471, f_measure: 0.907, kappa: 0.7664, kb_relative_information_score: 881425.6921, mean_absolute_error: 0.0437, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.906, predictive_accuracy: 0.9093, prior_entropy: 2.585, recall: 0.9093, relative_absolute_error: 0.1572, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1569, root_relative_squared_error: 0.421,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4997, f_measure: 0.0221, kappa: -0.0003, kb_relative_information_score: 18237.8096, mean_absolute_error: 0.2971, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.0124, predictive_accuracy: 0.1087, prior_entropy: 2.585, recall: 0.1087, relative_absolute_error: 1.0696, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.5441, root_relative_squared_error: 1.46,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7091, f_measure: 0.7729, kappa: 0.4318, kb_relative_information_score: 802731.2438, mean_absolute_error: 0.0608, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.7752, predictive_accuracy: 0.8185, prior_entropy: 2.585, recall: 0.8185, relative_absolute_error: 0.2188, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.2395, root_relative_squared_error: 0.6426,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9387, f_measure: 0.895, kappa: 0.7442, kb_relative_information_score: 869448.6175, mean_absolute_error: 0.0478, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.8951, predictive_accuracy: 0.9022, prior_entropy: 2.585, recall: 0.9022, relative_absolute_error: 0.1722, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1645, root_relative_squared_error: 0.4413,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4992, f_measure: 0.6559, kappa: -0, kb_relative_information_score: 630195.6754, mean_absolute_error: 0.1344, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.5771, predictive_accuracy: 0.7597, prior_entropy: 2.585, recall: 0.7597, relative_absolute_error: 0.4838, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.2592, root_relative_squared_error: 0.6954,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9787, f_measure: 0.9287, kappa: 0.8224, kb_relative_information_score: 831425.0852, mean_absolute_error: 0.0773, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9279, predictive_accuracy: 0.9309, prior_entropy: 2.585, recall: 0.9309, relative_absolute_error: 0.2784, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1554, root_relative_squared_error: 0.417,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9391, f_measure: 0.8728, kappa: 0.681, kb_relative_information_score: 849283.2134, mean_absolute_error: 0.0529, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.8789, predictive_accuracy: 0.8691, prior_entropy: 2.585, recall: 0.8691, relative_absolute_error: 0.1906, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.184, root_relative_squared_error: 0.4936,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9699, f_measure: 0.9193, kappa: 0.8023, kb_relative_information_score: 894657.2564, mean_absolute_error: 0.0418, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9197, predictive_accuracy: 0.9246, prior_entropy: 2.585, recall: 0.9246, relative_absolute_error: 0.1504, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1396, root_relative_squared_error: 0.3745,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8935, f_measure: 0.9038, kappa: 0.763, kb_relative_information_score: 370814.8507, mean_absolute_error: 0.225, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9025, predictive_accuracy: 0.9082, prior_entropy: 2.585, recall: 0.9082, relative_absolute_error: 0.8101, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.3147, root_relative_squared_error: 0.8443,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8867, f_measure: 0.8172, kappa: 0.5464, kb_relative_information_score: 779986.5359, mean_absolute_error: 0.0769, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.8269, predictive_accuracy: 0.8103, prior_entropy: 2.585, recall: 0.8103, relative_absolute_error: 0.2769, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.2207, root_relative_squared_error: 0.5923,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8817, f_measure: 0.8012, kappa: 0.4826, kb_relative_information_score: 780083.9468, mean_absolute_error: 0.0813, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.7998, predictive_accuracy: 0.8224, prior_entropy: 2.585, recall: 0.8224, relative_absolute_error: 0.2926, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.2078, root_relative_squared_error: 0.5577,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9309, f_measure: 0.8611, kappa: 0.6597, kb_relative_information_score: 863175.3162, mean_absolute_error: 0.0505, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.8794, predictive_accuracy: 0.8844, prior_entropy: 2.585, recall: 0.8844, relative_absolute_error: 0.1819, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1704, root_relative_squared_error: 0.4571,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9682, f_measure: 0.9121, kappa: 0.7803, kb_relative_information_score: 885242.0072, mean_absolute_error: 0.0453, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.911, predictive_accuracy: 0.9142, prior_entropy: 2.585, recall: 0.9142, relative_absolute_error: 0.163, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1462, root_relative_squared_error: 0.3922,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9302, f_measure: 0.8611, kappa: 0.6602, kb_relative_information_score: 863191.3436, mean_absolute_error: 0.0505, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.8796, predictive_accuracy: 0.8845, prior_entropy: 2.585, recall: 0.8845, relative_absolute_error: 0.1818, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1704, root_relative_squared_error: 0.4572,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9811, f_measure: 0.9256, kappa: 0.8167, kb_relative_information_score: 900381.0451, mean_absolute_error: 0.0411, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9261, predictive_accuracy: 0.93, prior_entropy: 2.585, recall: 0.93, relative_absolute_error: 0.1478, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1311, root_relative_squared_error: 0.3518,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9462, f_measure: 0.9036, kappa: 0.7594, kb_relative_information_score: 880120.5461, mean_absolute_error: 0.044, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.9031, predictive_accuracy: 0.9044, prior_entropy: 2.585, recall: 0.9044, relative_absolute_error: 0.1584, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.1599, root_relative_squared_error: 0.4291,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8858, f_measure: 0.8167, kappa: 0.5452, kb_relative_information_score: 779906.1969, mean_absolute_error: 0.0768, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.8265, predictive_accuracy: 0.8097, prior_entropy: 2.585, recall: 0.8097, relative_absolute_error: 0.2764, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.2215, root_relative_squared_error: 0.5943,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4998, f_measure: 0.0221, kappa: -0.0003, kb_relative_information_score: 17680.2173, mean_absolute_error: 0.2972, mean_prior_absolute_error: 0.2778, number_of_instances: 1000000, precision: 0.0124, predictive_accuracy: 0.1084, prior_entropy: 2.585, recall: 0.1084, relative_absolute_error: 1.0699, root_mean_prior_squared_error: 0.3727, root_mean_squared_error: 0.5452, root_relative_squared_error: 1.4628,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs