Task
Supervised Data Stream Classification on Agrawal1

Supervised Data Stream Classification on Agrawal1

Task 7309 Supervised Data Stream Classification Agrawal1 311 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
  • binstreams ecmlpkdd2015 streamensembles streams study_11 study_16
Issue #Downvotes for this reason By


Metric:

311 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7069, f_measure: 0.5402, kappa: 0, kb_relative_information_score: 296050.4312, mean_absolute_error: 0.3541, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5746, predictive_accuracy: 0.672, prior_entropy: 1, recall: 0.672, relative_absolute_error: 0.7082, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4257, root_relative_squared_error: 0.8515,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9488, f_measure: 0.9451, kappa: 0.8753, kb_relative_information_score: 830375.2006, mean_absolute_error: 0.095, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.945, predictive_accuracy: 0.9451, prior_entropy: 1, recall: 0.9451, relative_absolute_error: 0.19, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2264, root_relative_squared_error: 0.4527,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5005, f_measure: 0.5596, kappa: 0.001, kb_relative_information_score: 119254, mean_absolute_error: 0.4404, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5596, predictive_accuracy: 0.5596, prior_entropy: 1, recall: 0.5596, relative_absolute_error: 0.8807, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6636, root_relative_squared_error: 1.3272,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5402, kb_relative_information_score: 344090, mean_absolute_error: 0.328, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.4516, predictive_accuracy: 0.672, prior_entropy: 1, recall: 0.672, relative_absolute_error: 0.6559, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5727, root_relative_squared_error: 1.1453,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9869, f_measure: 0.9307, kappa: 0.8435, kb_relative_information_score: 729897.3009, mean_absolute_error: 0.1475, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9312, predictive_accuracy: 0.9304, prior_entropy: 1, recall: 0.9304, relative_absolute_error: 0.295, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2359, root_relative_squared_error: 0.4719,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9919, f_measure: 0.9497, kappa: 0.886, kb_relative_information_score: 859856.8539, mean_absolute_error: 0.075, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9498, predictive_accuracy: 0.9496, prior_entropy: 1, recall: 0.9496, relative_absolute_error: 0.1501, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1867, root_relative_squared_error: 0.3734,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.991, f_measure: 0.9476, kappa: 0.8815, kb_relative_information_score: 850477.7049, mean_absolute_error: 0.0806, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.948, predictive_accuracy: 0.9473, prior_entropy: 1, recall: 0.9473, relative_absolute_error: 0.1611, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1913, root_relative_squared_error: 0.3825,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5497, f_measure: 0.5931, kappa: 0.0501, kb_relative_information_score: 122045.4993, mean_absolute_error: 0.4473, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5882, predictive_accuracy: 0.6415, prior_entropy: 1, recall: 0.6415, relative_absolute_error: 0.8945, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4853, root_relative_squared_error: 0.9707,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9898, f_measure: 0.9492, kappa: 0.8848, kb_relative_information_score: 868412.1308, mean_absolute_error: 0.0692, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9492, predictive_accuracy: 0.9492, prior_entropy: 1, recall: 0.9492, relative_absolute_error: 0.1384, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.1891, root_relative_squared_error: 0.3782,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5004, f_measure: 0.5596, kappa: 0.0009, kb_relative_information_score: 119100, mean_absolute_error: 0.4405, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.5596, predictive_accuracy: 0.5596, prior_entropy: 1, recall: 0.5596, relative_absolute_error: 0.8809, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6637, root_relative_squared_error: 1.3273,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.992, f_measure: 0.8776, kappa: 0.714, kb_relative_information_score: 619984.7427, mean_absolute_error: 0.2003, mean_prior_absolute_error: 0.5, number_of_instances: 1000000, precision: 0.9019, predictive_accuracy: 0.8852, prior_entropy: 1, recall: 0.8852, relative_absolute_error: 0.4006, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.2987, root_relative_squared_error: 0.5974,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs