Task
Supervised Classification on lymph

Supervised Classification on lymph

Task 3869 Supervised Classification lymph 544 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
  • mythbusting_1 study_1 study_107 study_123 study_15 study_20 study_41 study_7 under100k under1m
Issue #Downvotes for this reason By


Metric:

544 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9388, build_cpu_time: 0.6772, build_memory: 732622400.6486, f_measure: 0.8567, kappa: 0.7103, kb_relative_information_score: 74.3807, mean_absolute_error: 0.2675, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.862, predictive_accuracy: 0.8581, prior_entropy: 0.9937, recall: 0.8581, relative_absolute_error: 0.5397, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3285, root_relative_squared_error: 0.6599, scimark_benchmark: 921.6453,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9351, build_cpu_time: 0.3937, build_memory: 868304928.2162, f_measure: 0.8633, kappa: 0.7237, kb_relative_information_score: 73.718, mean_absolute_error: 0.2699, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8701, predictive_accuracy: 0.8649, prior_entropy: 0.9937, recall: 0.8649, relative_absolute_error: 0.5446, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3311, root_relative_squared_error: 0.6653, scimark_benchmark: 896.8713,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9335, build_cpu_time: 0.273, build_memory: 643614065.7838, f_measure: 0.8501, kappa: 0.6969, kb_relative_information_score: 74.0049, mean_absolute_error: 0.2685, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.854, predictive_accuracy: 0.8514, prior_entropy: 0.9937, recall: 0.8514, relative_absolute_error: 0.5417, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3319, root_relative_squared_error: 0.6669, scimark_benchmark: 785.9104,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8534, build_cpu_time: 0.0014, build_memory: 1323956989.946, f_measure: 0.7907, kappa: 0.5778, kb_relative_information_score: 74.8437, mean_absolute_error: 0.2493, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7909, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.5031, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4101, root_relative_squared_error: 0.8239, scimark_benchmark: 942.3187,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8534, build_cpu_time: 0.0024, build_memory: 737880030.7027, f_measure: 0.7907, kappa: 0.5778, kb_relative_information_score: 74.8437, mean_absolute_error: 0.2493, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7909, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.5031, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4101, root_relative_squared_error: 0.8239, scimark_benchmark: 785.9104,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8534, build_cpu_time: 0.0013, build_memory: 861555026.8649, f_measure: 0.7907, kappa: 0.5778, kb_relative_information_score: 74.8437, mean_absolute_error: 0.2493, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7909, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.5031, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4101, root_relative_squared_error: 0.8239, scimark_benchmark: 902.1764,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8847, build_cpu_time: 0.0033, build_memory: 136559078.9189, f_measure: 0.791, kappa: 0.58, kb_relative_information_score: 76.1589, mean_absolute_error: 0.2483, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7932, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.501, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3892, root_relative_squared_error: 0.782, scimark_benchmark: 926.9727,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8847, build_cpu_time: 0.0034, build_memory: 375987972.7568, f_measure: 0.791, kappa: 0.58, kb_relative_information_score: 76.1589, mean_absolute_error: 0.2483, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7932, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.501, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3892, root_relative_squared_error: 0.782, scimark_benchmark: 938.3567,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8836, build_cpu_time: 0.007, build_memory: 1134934125.946, f_measure: 0.7977, kappa: 0.5941, kb_relative_information_score: 79.6433, mean_absolute_error: 0.235, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8008, predictive_accuracy: 0.7973, prior_entropy: 0.9937, recall: 0.7973, relative_absolute_error: 0.4741, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4002, root_relative_squared_error: 0.8039, scimark_benchmark: 937.52,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9122, build_cpu_time: 0.0614, build_memory: 246283638.3784, f_measure: 0.8442, kappa: 0.6852, kb_relative_information_score: 85.4368, mean_absolute_error: 0.221, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8446, predictive_accuracy: 0.8446, prior_entropy: 0.9937, recall: 0.8446, relative_absolute_error: 0.4459, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3404, root_relative_squared_error: 0.6838, scimark_benchmark: 938.3567,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9122, build_cpu_time: 0.0612, build_memory: 392312288.5946, f_measure: 0.8442, kappa: 0.6852, kb_relative_information_score: 85.4368, mean_absolute_error: 0.221, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8446, predictive_accuracy: 0.8446, prior_entropy: 0.9937, recall: 0.8446, relative_absolute_error: 0.4459, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3404, root_relative_squared_error: 0.6838, scimark_benchmark: 947.2295,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9084, build_cpu_time: 0.0303, build_memory: 1195896959.946, f_measure: 0.8223, kappa: 0.6408, kb_relative_information_score: 88.3914, mean_absolute_error: 0.2019, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8282, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.4073, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3699, root_relative_squared_error: 0.743, scimark_benchmark: 905.0866,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9084, build_cpu_time: 0.0258, build_memory: 285591010.1081, f_measure: 0.8223, kappa: 0.6408, kb_relative_information_score: 88.3914, mean_absolute_error: 0.2019, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8282, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.4073, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3699, root_relative_squared_error: 0.743, scimark_benchmark: 939.6798,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9084, build_cpu_time: 0.0277, build_memory: 880362323.5135, f_measure: 0.8223, kappa: 0.6408, kb_relative_information_score: 88.3914, mean_absolute_error: 0.2019, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8282, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.4073, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3699, root_relative_squared_error: 0.743, scimark_benchmark: 932.5791,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8065, build_cpu_time: 0.1197, build_memory: 117687066.5946, f_measure: 0.8112, kappa: 0.6202, kb_relative_information_score: 90.6372, mean_absolute_error: 0.1916, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8127, predictive_accuracy: 0.8108, prior_entropy: 0.9937, recall: 0.8108, relative_absolute_error: 0.3866, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4359, root_relative_squared_error: 0.8757, scimark_benchmark: 945.5725,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8065, build_cpu_time: 0.1298, build_memory: 71372367.1351, f_measure: 0.8112, kappa: 0.6202, kb_relative_information_score: 90.6372, mean_absolute_error: 0.1916, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8127, predictive_accuracy: 0.8108, prior_entropy: 0.9937, recall: 0.8108, relative_absolute_error: 0.3866, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4359, root_relative_squared_error: 0.8757, scimark_benchmark: 938.6306,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8065, build_cpu_time: 0.1282, build_memory: 55456377.6216, f_measure: 0.8112, kappa: 0.6202, kb_relative_information_score: 90.6372, mean_absolute_error: 0.1916, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8127, predictive_accuracy: 0.8108, prior_entropy: 0.9937, recall: 0.8108, relative_absolute_error: 0.3866, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4359, root_relative_squared_error: 0.8757, scimark_benchmark: 946.8656,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9038, build_cpu_time: 0.0026, build_memory: 186285405.1892, f_measure: 0.8158, kappa: 0.6275, kb_relative_information_score: 88.0785, mean_absolute_error: 0.2034, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8203, predictive_accuracy: 0.8176, prior_entropy: 0.9937, recall: 0.8176, relative_absolute_error: 0.4105, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3779, root_relative_squared_error: 0.7592, scimark_benchmark: 942.5344,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9038, build_cpu_time: 0.0023, build_memory: 229539748.9189, f_measure: 0.8158, kappa: 0.6275, kb_relative_information_score: 88.0785, mean_absolute_error: 0.2034, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8203, predictive_accuracy: 0.8176, prior_entropy: 0.9937, recall: 0.8176, relative_absolute_error: 0.4105, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3779, root_relative_squared_error: 0.7592, scimark_benchmark: 929.8459,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9081, build_cpu_time: 111.1999, build_memory: 3049209454.0541, f_measure: 0.8509, kappa: 0.6985, kb_relative_information_score: 93.8937, mean_absolute_error: 0.1876, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8516, predictive_accuracy: 0.8514, prior_entropy: 0.9937, recall: 0.8514, relative_absolute_error: 0.3785, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3502, root_relative_squared_error: 0.7035, scimark_benchmark: 944.3501,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9097, build_cpu_time: 247.3944, build_memory: 619165060.2703, f_measure: 0.8442, kappa: 0.6852, kb_relative_information_score: 93.6632, mean_absolute_error: 0.1883, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8446, predictive_accuracy: 0.8446, prior_entropy: 0.9937, recall: 0.8446, relative_absolute_error: 0.38, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3499, root_relative_squared_error: 0.703, scimark_benchmark: 876.9475,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8996, build_cpu_time: 0.0209, build_memory: 2291906987.6757, f_measure: 0.7909, kappa: 0.5789, kb_relative_information_score: 61.3825, mean_absolute_error: 0.3119, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7918, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.6293, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3675, root_relative_squared_error: 0.7384, scimark_benchmark: 942.4935,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8981, build_cpu_time: 0.0116, build_memory: 1035917865.2432, f_measure: 0.7909, kappa: 0.5789, kb_relative_information_score: 61.6126, mean_absolute_error: 0.3114, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7918, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.6283, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3674, root_relative_squared_error: 0.7382, scimark_benchmark: 941.4198,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9001, build_cpu_time: 0.0157, build_memory: 52433421.8378, f_measure: 0.7975, kappa: 0.592, kb_relative_information_score: 61.2297, mean_absolute_error: 0.3133, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.798, predictive_accuracy: 0.7973, prior_entropy: 0.9937, recall: 0.7973, relative_absolute_error: 0.6321, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3657, root_relative_squared_error: 0.7347, scimark_benchmark: 942.3073,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.873, build_cpu_time: 0.496, build_memory: 3068976104.0541, f_measure: 0.8644, kappa: 0.7259, kb_relative_information_score: 107.0045, mean_absolute_error: 0.1369, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8652, predictive_accuracy: 0.8649, prior_entropy: 0.9937, recall: 0.8649, relative_absolute_error: 0.2762, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3657, root_relative_squared_error: 0.7347, scimark_benchmark: 944.3501,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8996, build_cpu_time: 0.0074, build_memory: 406559935.2973, f_measure: 0.8237, kappa: 0.6436, kb_relative_information_score: 58.6342, mean_absolute_error: 0.3225, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8244, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.6508, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3697, root_relative_squared_error: 0.7427, scimark_benchmark: 942.728,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8861, build_cpu_time: 0.0038, build_memory: 2868386900.5946, f_measure: 0.7896, kappa: 0.5746, kb_relative_information_score: 56.4559, mean_absolute_error: 0.3268, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.7905, predictive_accuracy: 0.7905, prior_entropy: 0.9937, recall: 0.7905, relative_absolute_error: 0.6594, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3795, root_relative_squared_error: 0.7623, scimark_benchmark: 941.5509,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.92, build_cpu_time: 1.2244, build_memory: 1852136962.3784, f_measure: 0.8303, kappa: 0.6569, kb_relative_information_score: 89.0253, mean_absolute_error: 0.2034, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8315, predictive_accuracy: 0.8311, prior_entropy: 0.9937, recall: 0.8311, relative_absolute_error: 0.4104, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3505, root_relative_squared_error: 0.7043, scimark_benchmark: 998.3701,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9259, build_cpu_time: 3.057, build_memory: 124936212.4865, f_measure: 0.8237, kappa: 0.6436, kb_relative_information_score: 89.8568, mean_absolute_error: 0.2005, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8244, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.4045, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.34, root_relative_squared_error: 0.683, scimark_benchmark: 876.9475,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9281, build_cpu_time: 5.3778, build_memory: 230739707.9459, f_measure: 0.8307, kappa: 0.6578, kb_relative_information_score: 89.8206, mean_absolute_error: 0.2007, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.831, predictive_accuracy: 0.8311, prior_entropy: 0.9937, recall: 0.8311, relative_absolute_error: 0.4049, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3372, root_relative_squared_error: 0.6774, scimark_benchmark: 938.259,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9261, build_cpu_time: 9.8862, build_memory: 470621621.0811, f_measure: 0.8241, kappa: 0.6446, kb_relative_information_score: 89.7382, mean_absolute_error: 0.2012, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8241, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.406, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3391, root_relative_squared_error: 0.6812, scimark_benchmark: 935.2997,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9248, build_cpu_time: 21.0692, build_memory: 1578572631.8919, f_measure: 0.8241, kappa: 0.6446, kb_relative_information_score: 89.7903, mean_absolute_error: 0.2011, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8241, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.4057, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.339, root_relative_squared_error: 0.6811, scimark_benchmark: 943.8925,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8476, build_cpu_time: 0.4135, build_memory: 453088465.2432, f_measure: 0.8445, kappa: 0.686, kb_relative_information_score: 101.3912, mean_absolute_error: 0.1554, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8445, predictive_accuracy: 0.8446, prior_entropy: 0.9937, recall: 0.8446, relative_absolute_error: 0.3136, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3942, root_relative_squared_error: 0.792, scimark_benchmark: 897.921,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8544, build_cpu_time: 0.2313, build_memory: 1171314571.2432, f_measure: 0.8378, kappa: 0.6727, kb_relative_information_score: 100.3115, mean_absolute_error: 0.1585, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8378, predictive_accuracy: 0.8378, prior_entropy: 0.9937, recall: 0.8378, relative_absolute_error: 0.3199, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3951, root_relative_squared_error: 0.7938, scimark_benchmark: 944.0892,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8544, build_cpu_time: 0.2212, build_memory: 1266467756.1081, f_measure: 0.8378, kappa: 0.6727, kb_relative_information_score: 100.3115, mean_absolute_error: 0.1585, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8378, predictive_accuracy: 0.8378, prior_entropy: 0.9937, recall: 0.8378, relative_absolute_error: 0.3199, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3951, root_relative_squared_error: 0.7938, scimark_benchmark: 890.4487,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.873, build_cpu_time: 0.1276, build_memory: 164630738.3784, f_measure: 0.8312, kappa: 0.6596, kb_relative_information_score: 97.3877, mean_absolute_error: 0.1687, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8314, predictive_accuracy: 0.8311, prior_entropy: 0.9937, recall: 0.8311, relative_absolute_error: 0.3405, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.4089, root_relative_squared_error: 0.8215, scimark_benchmark: 941.4198,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8739, build_cpu_time: 0.0956, build_memory: 127134772.4324, f_measure: 0.8445, kappa: 0.686, kb_relative_information_score: 101.4571, mean_absolute_error: 0.1552, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8445, predictive_accuracy: 0.8446, prior_entropy: 0.9937, recall: 0.8446, relative_absolute_error: 0.3132, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3895, root_relative_squared_error: 0.7826, scimark_benchmark: 942.9632,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8739, build_cpu_time: 0.0572, build_memory: 989719571.6757, f_measure: 0.8445, kappa: 0.686, kb_relative_information_score: 101.4571, mean_absolute_error: 0.1552, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8445, predictive_accuracy: 0.8446, prior_entropy: 0.9937, recall: 0.8446, relative_absolute_error: 0.3132, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3895, root_relative_squared_error: 0.7826, scimark_benchmark: 920.6195,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9169, build_cpu_time: 0.3157, build_memory: 87250386.7568, f_measure: 0.8237, kappa: 0.6436, kb_relative_information_score: 78.1092, mean_absolute_error: 0.2481, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8244, predictive_accuracy: 0.8243, prior_entropy: 0.9937, recall: 0.8243, relative_absolute_error: 0.5005, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3431, root_relative_squared_error: 0.6893, scimark_benchmark: 928.0258,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9217, build_cpu_time: 2.9613, build_memory: 502864391.6757, f_measure: 0.8102, kappa: 0.6162, kb_relative_information_score: 77.672, mean_absolute_error: 0.2493, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8108, predictive_accuracy: 0.8108, prior_entropy: 0.9937, recall: 0.8108, relative_absolute_error: 0.503, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3423, root_relative_squared_error: 0.6876, scimark_benchmark: 937.0061,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9208, build_cpu_time: 0.0893, build_memory: 582222286.0541, f_measure: 0.8171, kappa: 0.6304, kb_relative_information_score: 82.0603, mean_absolute_error: 0.2312, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8174, predictive_accuracy: 0.8176, prior_entropy: 0.9937, recall: 0.8176, relative_absolute_error: 0.4665, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3404, root_relative_squared_error: 0.6839, scimark_benchmark: 941.9449,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9233, build_cpu_time: 0.0662, build_memory: 229260497.7838, f_measure: 0.831, kappa: 0.6587, kb_relative_information_score: 82.551, mean_absolute_error: 0.23, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8309, predictive_accuracy: 0.8311, prior_entropy: 0.9937, recall: 0.8311, relative_absolute_error: 0.4641, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.339, root_relative_squared_error: 0.681, scimark_benchmark: 938.9098,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9219, build_cpu_time: 0.0283, build_memory: 1086544590.9189, f_measure: 0.8378, kappa: 0.6727, kb_relative_information_score: 83.3728, mean_absolute_error: 0.2269, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8378, predictive_accuracy: 0.8378, prior_entropy: 0.9937, recall: 0.8378, relative_absolute_error: 0.4579, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3379, root_relative_squared_error: 0.6789, scimark_benchmark: 940.4721,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9243, build_cpu_time: 0.013, build_memory: 329188936, f_measure: 0.8178, kappa: 0.6333, kb_relative_information_score: 83.0958, mean_absolute_error: 0.2277, mean_prior_absolute_error: 0.4956, number_of_instances: 148, precision: 0.8188, predictive_accuracy: 0.8176, prior_entropy: 0.9937, recall: 0.8176, relative_absolute_error: 0.4595, root_mean_prior_squared_error: 0.4978, root_mean_squared_error: 0.3374, root_relative_squared_error: 0.6778, scimark_benchmark: 936.9986,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
model A file containing the model built on all the input data. File (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs