Task
Supervised Data Stream Classification on spect_train

Supervised Data Stream Classification on spect_train

Task 2243 Supervised Data Stream Classification spect_train 25 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

25 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, kb_relative_information_score: 28, mean_absolute_error: 0.325, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 0.65, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5701, root_relative_squared_error: 1.1402, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5157, f_measure: 0.575, kappa: 0.0313, kb_relative_information_score: 12, mean_absolute_error: 0.425, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.575, predictive_accuracy: 0.575, prior_entropy: 1, recall: 0.575, relative_absolute_error: 0.85, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6519, root_relative_squared_error: 1.3038,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6528, f_measure: 0.6967, kappa: 0.3023, kb_relative_information_score: 28.6021, mean_absolute_error: 0.3268, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6943, predictive_accuracy: 0.7, prior_entropy: 1, recall: 0.7, relative_absolute_error: 0.6536, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4963, root_relative_squared_error: 0.9925,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4754, f_measure: 0.6778, kappa: 0.2504, kb_relative_information_score: 10.6983, mean_absolute_error: 0.4469, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6736, predictive_accuracy: 0.6875, prior_entropy: 1, recall: 0.6875, relative_absolute_error: 0.8938, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5181, root_relative_squared_error: 1.0362, run_cpu_time: 0.05,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6784, f_measure: 0.6715, kappa: 0.2442, kb_relative_information_score: 23.7391, mean_absolute_error: 0.3599, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6688, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 0.7197, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4621, root_relative_squared_error: 0.9242, run_cpu_time: 0.09,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5741, f_measure: 0.6089, kappa: 0.1398, kb_relative_information_score: 16, mean_absolute_error: 0.4, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6242, predictive_accuracy: 0.6, prior_entropy: 1, recall: 0.6, relative_absolute_error: 0.8, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6325, root_relative_squared_error: 1.2649, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6503, f_measure: 0.6929, kappa: 0.2878, kb_relative_information_score: 15.0215, mean_absolute_error: 0.4196, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6893, predictive_accuracy: 0.7, prior_entropy: 1, recall: 0.7, relative_absolute_error: 0.8392, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4651, root_relative_squared_error: 0.9303, run_cpu_time: 0.07,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6528, f_measure: 0.6967, kappa: 0.3023, kb_relative_information_score: 28.6021, mean_absolute_error: 0.3268, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6943, predictive_accuracy: 0.7, prior_entropy: 1, recall: 0.7, relative_absolute_error: 0.6536, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4963, root_relative_squared_error: 0.9925, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4754, f_measure: 0.6778, kappa: 0.2504, kb_relative_information_score: 10.6983, mean_absolute_error: 0.4469, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6736, predictive_accuracy: 0.6875, prior_entropy: 1, recall: 0.6875, relative_absolute_error: 0.8938, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5181, root_relative_squared_error: 1.0362, run_cpu_time: 0.05,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.515, f_measure: 0.5804, kappa: 0.0308, kb_relative_information_score: 14, mean_absolute_error: 0.4125, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.5749, predictive_accuracy: 0.5875, prior_entropy: 1, recall: 0.5875, relative_absolute_error: 0.825, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6423, root_relative_squared_error: 1.2845,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6695, f_measure: 0.6804, kappa: 0.2877, kb_relative_information_score: 28.705, mean_absolute_error: 0.3229, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.689, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 0.6457, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4901, root_relative_squared_error: 0.9802, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6004, f_measure: 0.6364, kappa: 0.1515, kb_relative_information_score: 6.1952, mean_absolute_error: 0.47, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.63, predictive_accuracy: 0.65, prior_entropy: 1, recall: 0.65, relative_absolute_error: 0.94, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4868, root_relative_squared_error: 0.9736, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6496, f_measure: 0.6929, kappa: 0.2878, kb_relative_information_score: 14.8394, mean_absolute_error: 0.4208, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6893, predictive_accuracy: 0.7, prior_entropy: 1, ram_hours: 0, recall: 0.7, relative_absolute_error: 0.8416, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4656, root_relative_squared_error: 0.9311, run_cpu_time: 0.004,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6385, f_measure: 0.6607, kappa: 0.223, kb_relative_information_score: 24.7003, mean_absolute_error: 0.35, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6592, predictive_accuracy: 0.6625, prior_entropy: 1, ram_hours: 0, recall: 0.6625, relative_absolute_error: 0.7, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.501, root_relative_squared_error: 1.002, run_cpu_time: 0.0264,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, kb_relative_information_score: 28, mean_absolute_error: 0.325, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, ram_hours: 0, recall: 0.675, relative_absolute_error: 0.65, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5701, root_relative_squared_error: 1.1402, run_cpu_time: 0.0016,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5659, f_measure: 0.6446, kappa: 0.213, kb_relative_information_score: 5.2514, mean_absolute_error: 0.4743, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6565, predictive_accuracy: 0.6375, prior_entropy: 1, ram_hours: 0, recall: 0.6375, relative_absolute_error: 0.9487, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4975, root_relative_squared_error: 0.995, run_cpu_time: 0.0009,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6528, f_measure: 0.6967, kappa: 0.3023, kb_relative_information_score: 28.6021, mean_absolute_error: 0.3268, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6943, predictive_accuracy: 0.7, prior_entropy: 1, ram_hours: 0, recall: 0.7, relative_absolute_error: 0.6536, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4963, root_relative_squared_error: 0.9925, run_cpu_time: 0.0024,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6784, f_measure: 0.6715, kappa: 0.2442, kb_relative_information_score: 23.7391, mean_absolute_error: 0.3599, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.6688, predictive_accuracy: 0.675, prior_entropy: 1, ram_hours: 0, recall: 0.675, relative_absolute_error: 0.7197, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4621, root_relative_squared_error: 0.9242, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.544, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.4556, predictive_accuracy: 0.675, prior_entropy: 1, recall: 0.675, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6004, f_measure: 0.6364, kappa: 0.1515, kb_relative_information_score: 6.1952, mean_absolute_error: 0.47, mean_prior_absolute_error: 0.5, number_of_instances: 80, precision: 0.63, predictive_accuracy: 0.65, prior_entropy: 1, recall: 0.65, relative_absolute_error: 0.94, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4868, root_relative_squared_error: 0.9736,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs