Task
Supervised Data Stream Classification on zoo

Supervised Data Stream Classification on zoo

Task 2228 Supervised Data Stream Classification zoo 24 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

24 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9181, f_measure: 0.8384, kappa: 0.7918, kb_relative_information_score: 84.0301, mean_absolute_error: 0.052, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8502, predictive_accuracy: 0.8416, prior_entropy: 2.8074, recall: 0.8416, relative_absolute_error: 0.2125, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.192, root_relative_squared_error: 0.5488, run_cpu_time: 0.29,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5832, f_measure: 0.3548, kappa: 0.1502, kb_relative_information_score: 30.8508, mean_absolute_error: 0.1839, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.3534, predictive_accuracy: 0.3564, prior_entropy: 2.8074, recall: 0.3564, relative_absolute_error: 0.7508, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.4288, root_relative_squared_error: 1.2254, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.2344, mean_absolute_error: 0.2449, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, recall: 0.4059, relative_absolute_error: 1, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3499, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9233, f_measure: 0.873, kappa: 0.8314, kb_relative_information_score: 86.8453, mean_absolute_error: 0.0383, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8795, predictive_accuracy: 0.8713, prior_entropy: 2.8074, recall: 0.8713, relative_absolute_error: 0.1564, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.1861, root_relative_squared_error: 0.5319, run_cpu_time: 0.04,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.2344, mean_absolute_error: 0.2449, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, recall: 0.4059, relative_absolute_error: 1, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3499, root_relative_squared_error: 1, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.2344, mean_absolute_error: 0.2449, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, recall: 0.4059, relative_absolute_error: 1, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3499, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.2344, kb_relative_information_score: 36.2469, mean_absolute_error: 0.1697, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, recall: 0.4059, relative_absolute_error: 0.6931, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.412, root_relative_squared_error: 1.1773,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.2344, mean_absolute_error: 0.2449, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, recall: 0.4059, relative_absolute_error: 1, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3499, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9244, f_measure: 0.6833, kappa: 0.6143, kb_relative_information_score: 68.9833, mean_absolute_error: 0.0973, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.6754, predictive_accuracy: 0.7228, prior_entropy: 2.8074, recall: 0.7228, relative_absolute_error: 0.3972, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.2323, root_relative_squared_error: 0.6638,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9221, f_measure: 0.873, kappa: 0.8314, kb_relative_information_score: 86.5738, mean_absolute_error: 0.0391, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8795, predictive_accuracy: 0.8713, prior_entropy: 2.8074, recall: 0.8713, relative_absolute_error: 0.1597, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.1857, root_relative_squared_error: 0.5307, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8709, f_measure: 0.8495, kappa: 0.8014, kb_relative_information_score: 80.7709, mean_absolute_error: 0.0658, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8651, predictive_accuracy: 0.8515, prior_entropy: 2.8074, recall: 0.8515, relative_absolute_error: 0.2687, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.2017, root_relative_squared_error: 0.5764, run_cpu_time: 0.08,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7578, f_measure: 0.4394, kappa: 0.3012, kb_relative_information_score: 45.2089, mean_absolute_error: 0.1639, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.3992, predictive_accuracy: 0.4951, prior_entropy: 2.8074, recall: 0.4951, relative_absolute_error: 0.6692, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.2968, root_relative_squared_error: 0.8482, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4457, f_measure: 0.2344, kb_relative_information_score: 27.2783, mean_absolute_error: 0.2077, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, recall: 0.4059, relative_absolute_error: 0.8482, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3358, root_relative_squared_error: 0.9597, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9243, f_measure: 0.6833, kappa: 0.6143, kb_relative_information_score: 68.9534, mean_absolute_error: 0.0973, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.6754, predictive_accuracy: 0.7228, prior_entropy: 2.8074, ram_hours: 0, recall: 0.7228, relative_absolute_error: 0.3975, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.2325, root_relative_squared_error: 0.6644, run_cpu_time: 0.0658,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9221, f_measure: 0.873, kappa: 0.8314, kb_relative_information_score: 86.5738, mean_absolute_error: 0.0391, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8795, predictive_accuracy: 0.8713, prior_entropy: 2.8074, recall: 0.8713, relative_absolute_error: 0.1597, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.1857, root_relative_squared_error: 0.5307,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9221, f_measure: 0.873, kappa: 0.8314, kb_relative_information_score: 86.5738, mean_absolute_error: 0.0391, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8795, predictive_accuracy: 0.8713, prior_entropy: 2.8074, recall: 0.8713, relative_absolute_error: 0.1597, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.1857, root_relative_squared_error: 0.5307, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9181, f_measure: 0.8384, kappa: 0.7918, kb_relative_information_score: 84.0301, mean_absolute_error: 0.052, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8502, predictive_accuracy: 0.8416, prior_entropy: 2.8074, recall: 0.8416, relative_absolute_error: 0.2125, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.192, root_relative_squared_error: 0.5488, run_cpu_time: 0.1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.2344, mean_absolute_error: 0.2449, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, ram_hours: 0, recall: 0.4059, relative_absolute_error: 1, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3499, root_relative_squared_error: 1, run_cpu_time: 0.0031,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5639, f_measure: 0.3005, kappa: 0.1093, kb_relative_information_score: 31.9301, mean_absolute_error: 0.181, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.2723, predictive_accuracy: 0.3663, prior_entropy: 2.8074, ram_hours: 0, recall: 0.3663, relative_absolute_error: 0.7393, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.4255, root_relative_squared_error: 1.216, run_cpu_time: 0.0023,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5336, f_measure: 0.2284, kappa: 0.0608, kb_relative_information_score: 24.3755, mean_absolute_error: 0.2008, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.2479, predictive_accuracy: 0.297, prior_entropy: 2.8074, ram_hours: 0, recall: 0.297, relative_absolute_error: 0.8201, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.4482, root_relative_squared_error: 1.2807, run_cpu_time: 0.0022,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.2344, mean_absolute_error: 0.2449, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, ram_hours: 0, recall: 0.4059, relative_absolute_error: 1, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3499, root_relative_squared_error: 1, run_cpu_time: 0.0032,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4457, f_measure: 0.2344, kb_relative_information_score: 27.2783, mean_absolute_error: 0.2077, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.1648, predictive_accuracy: 0.4059, prior_entropy: 2.8074, ram_hours: 0, recall: 0.4059, relative_absolute_error: 0.8482, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3358, root_relative_squared_error: 0.9597, run_cpu_time: 0.0027,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7111, f_measure: 0.452, kappa: 0.2569, kb_relative_information_score: 42.9838, mean_absolute_error: 0.1619, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.6351, predictive_accuracy: 0.5248, prior_entropy: 2.8074, ram_hours: 0, recall: 0.5248, relative_absolute_error: 0.661, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.3074, root_relative_squared_error: 0.8783, run_cpu_time: 1.08,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8709, f_measure: 0.8495, kappa: 0.8014, kb_relative_information_score: 80.7709, mean_absolute_error: 0.0658, mean_prior_absolute_error: 0.2449, number_of_instances: 101, precision: 0.8651, predictive_accuracy: 0.8515, prior_entropy: 2.8074, ram_hours: 0, recall: 0.8515, relative_absolute_error: 0.2687, root_mean_prior_squared_error: 0.3499, root_mean_squared_error: 0.2017, root_relative_squared_error: 0.5764, run_cpu_time: 0.04,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs