Task
Supervised Data Stream Classification on ionosphere

Supervised Data Stream Classification on ionosphere

Task 2225 Supervised Data Stream Classification ionosphere 25 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

25 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, ram_hours: 0, recall: 0.359, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.0059,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.415, f_measure: 0.4282, kappa: -0.2516, kb_relative_information_score: 14.9365, mean_absolute_error: 0.4844, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.3736, predictive_accuracy: 0.5014, prior_entropy: 1, ram_hours: 0, recall: 0.5014, relative_absolute_error: 0.9688, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.488, root_relative_squared_error: 0.976, run_cpu_time: 0.0046,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.893, f_measure: 0.7766, kappa: 0.5489, kb_relative_information_score: 193.8106, mean_absolute_error: 0.2233, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8204, predictive_accuracy: 0.7721, prior_entropy: 1, ram_hours: 0, recall: 0.7721, relative_absolute_error: 0.4467, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4606, root_relative_squared_error: 0.9212, run_cpu_time: 0.0207,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8976, f_measure: 0.8792, kappa: 0.7432, kb_relative_information_score: 149.9936, mean_absolute_error: 0.314, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8873, predictive_accuracy: 0.8775, prior_entropy: 1, ram_hours: 0, recall: 0.8775, relative_absolute_error: 0.628, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3737, root_relative_squared_error: 0.7475, run_cpu_time: 0.1167,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, kb_relative_information_score: -99, mean_absolute_error: 0.641, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, ram_hours: 0, recall: 0.359, relative_absolute_error: 1.2821, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.8006, root_relative_squared_error: 1.6013, run_cpu_time: 0.0991,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8777, f_measure: 0.7701, kappa: 0.4904, kb_relative_information_score: 182.9633, mean_absolute_error: 0.243, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.7799, predictive_accuracy: 0.7806, prior_entropy: 1, ram_hours: 0, recall: 0.7806, relative_absolute_error: 0.486, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3903, root_relative_squared_error: 0.7806, run_cpu_time: 0.0431,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8768, f_measure: 0.8158, kappa: 0.6206, kb_relative_information_score: 207.5832, mean_absolute_error: 0.2094, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8449, predictive_accuracy: 0.812, prior_entropy: 1, recall: 0.812, relative_absolute_error: 0.4188, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4273, root_relative_squared_error: 0.8546, run_cpu_time: 0.04,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7613, f_measure: 0.7056, kappa: 0.3651, kb_relative_information_score: 119.0011, mean_absolute_error: 0.3408, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.7082, predictive_accuracy: 0.7037, prior_entropy: 1, recall: 0.7037, relative_absolute_error: 0.6815, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4468, root_relative_squared_error: 0.8935, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.893, f_measure: 0.7766, kappa: 0.5489, kb_relative_information_score: 193.8106, mean_absolute_error: 0.2233, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8204, predictive_accuracy: 0.7721, prior_entropy: 1, recall: 0.7721, relative_absolute_error: 0.4467, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4606, root_relative_squared_error: 0.9212, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5829, f_measure: 0.6232, kappa: 0.2016, kb_relative_information_score: 139, mean_absolute_error: 0.302, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.7662, predictive_accuracy: 0.698, prior_entropy: 1, recall: 0.698, relative_absolute_error: 0.604, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5495, root_relative_squared_error: 1.0991, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8778, f_measure: 0.7701, kappa: 0.4904, kb_relative_information_score: 183.0157, mean_absolute_error: 0.243, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.7799, predictive_accuracy: 0.7806, prior_entropy: 1, recall: 0.7806, relative_absolute_error: 0.4859, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3901, root_relative_squared_error: 0.7802, run_cpu_time: 1.32,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, kb_relative_information_score: -99, mean_absolute_error: 0.641, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, recall: 0.359, relative_absolute_error: 1.2821, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.8006, root_relative_squared_error: 1.6013, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.901, f_measure: 0.7683, kappa: 0.5297, kb_relative_information_score: 187.9349, mean_absolute_error: 0.2322, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8077, predictive_accuracy: 0.7635, prior_entropy: 1, recall: 0.7635, relative_absolute_error: 0.4645, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4412, root_relative_squared_error: 0.8824, run_cpu_time: 0.76,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, recall: 0.359, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.08,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.893, f_measure: 0.7766, kappa: 0.5489, kb_relative_information_score: 193.8106, mean_absolute_error: 0.2233, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8204, predictive_accuracy: 0.7721, prior_entropy: 1, ram_hours: 0, recall: 0.7721, relative_absolute_error: 0.4467, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4606, root_relative_squared_error: 0.9212, run_cpu_time: 0.0134,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, ram_hours: 0, recall: 0.359, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.0062,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, ram_hours: 0, recall: 0.359, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.0056,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, ram_hours: 0, recall: 0.359, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.0059,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.1896, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.1289, predictive_accuracy: 0.359, prior_entropy: 1, ram_hours: 0, recall: 0.359, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.0058,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.901, f_measure: 0.7683, kappa: 0.5297, kb_relative_information_score: 187.9349, mean_absolute_error: 0.2322, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8077, predictive_accuracy: 0.7635, prior_entropy: 1, ram_hours: 0, recall: 0.7635, relative_absolute_error: 0.4645, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4412, root_relative_squared_error: 0.8824, run_cpu_time: 0.14,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9017, f_measure: 0.8792, kappa: 0.7432, kb_relative_information_score: 161.0521, mean_absolute_error: 0.2966, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.8873, predictive_accuracy: 0.8775, prior_entropy: 1, ram_hours: 0, recall: 0.8775, relative_absolute_error: 0.5932, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3644, root_relative_squared_error: 0.7288, run_cpu_time: 0.14,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8932, f_measure: 0.8567, kappa: 0.6955, kb_relative_information_score: 224.7784, mean_absolute_error: 0.1888, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.865, predictive_accuracy: 0.8547, prior_entropy: 1, ram_hours: 0, recall: 0.8547, relative_absolute_error: 0.3776, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3534, root_relative_squared_error: 0.7068, run_cpu_time: 0.34,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5317, f_measure: 0.5694, kappa: 0.0636, kb_relative_information_score: 49, mean_absolute_error: 0.4302, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.569, predictive_accuracy: 0.5698, prior_entropy: 1, ram_hours: 0, recall: 0.5698, relative_absolute_error: 0.8604, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6559, root_relative_squared_error: 1.3118, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.415, f_measure: 0.4282, kappa: -0.2516, kb_relative_information_score: 14.9365, mean_absolute_error: 0.4844, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.3736, predictive_accuracy: 0.5014, prior_entropy: 1, ram_hours: 0, recall: 0.5014, relative_absolute_error: 0.9688, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.488, root_relative_squared_error: 0.976, run_cpu_time: 0.09,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.2178, f_measure: 0.2798, kappa: -0.5635, kb_relative_information_score: -155, mean_absolute_error: 0.7208, mean_prior_absolute_error: 0.5, number_of_instances: 351, precision: 0.2804, predictive_accuracy: 0.2792, prior_entropy: 1, recall: 0.2792, relative_absolute_error: 1.4416, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.849, root_relative_squared_error: 1.698,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs