Task
Supervised Data Stream Classification on colic

Supervised Data Stream Classification on colic

Task 2195 Supervised Data Stream Classification colic 25 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

25 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8087, f_measure: 0.7659, kappa: 0.4969, kb_relative_information_score: 180.6257, mean_absolute_error: 0.2581, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7656, predictive_accuracy: 0.7663, prior_entropy: 1, ram_hours: 0, recall: 0.7663, relative_absolute_error: 0.5162, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4299, root_relative_squared_error: 0.8599, run_cpu_time: 0.0079,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, ram_hours: 0, recall: 0.6304, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.0055,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7958, f_measure: 0.7613, kappa: 0.4985, kb_relative_information_score: 183.1464, mean_absolute_error: 0.2536, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7703, predictive_accuracy: 0.7582, prior_entropy: 1, recall: 0.7582, relative_absolute_error: 0.5073, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.446, root_relative_squared_error: 0.8919, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5101, f_measure: 0.5435, kappa: 0.0203, kb_relative_information_score: 32, mean_absolute_error: 0.4565, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5435, predictive_accuracy: 0.5435, prior_entropy: 1, recall: 0.5435, relative_absolute_error: 0.913, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6757, root_relative_squared_error: 1.3513, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8385, f_measure: 0.7962, kappa: 0.5561, kb_relative_information_score: 165.8332, mean_absolute_error: 0.2892, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.8003, predictive_accuracy: 0.8016, prior_entropy: 1, recall: 0.8016, relative_absolute_error: 0.5785, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3857, root_relative_squared_error: 0.7713, run_cpu_time: 0.08,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7704, f_measure: 0.7647, kappa: 0.4923, kb_relative_information_score: 80.7773, mean_absolute_error: 0.4084, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7639, predictive_accuracy: 0.7663, prior_entropy: 1, recall: 0.7663, relative_absolute_error: 0.8168, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4474, root_relative_squared_error: 0.8948, run_cpu_time: 0.08,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5165, f_measure: 0.5571, kappa: 0.0345, kb_relative_information_score: 52, mean_absolute_error: 0.4293, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5507, predictive_accuracy: 0.5707, prior_entropy: 1, recall: 0.5707, relative_absolute_error: 0.8587, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6552, root_relative_squared_error: 1.3105, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, recall: 0.6304, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, kb_relative_information_score: 96, mean_absolute_error: 0.3696, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, recall: 0.6304, relative_absolute_error: 0.7391, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6079, root_relative_squared_error: 1.2158, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7958, f_measure: 0.7613, kappa: 0.4985, kb_relative_information_score: 183.1464, mean_absolute_error: 0.2536, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7703, predictive_accuracy: 0.7582, prior_entropy: 1, recall: 0.7582, relative_absolute_error: 0.5073, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.446, root_relative_squared_error: 0.8919, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4847, f_measure: 0.5218, kappa: 0.0107, kb_relative_information_score: 30.6048, mean_absolute_error: 0.4667, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5467, predictive_accuracy: 0.6168, prior_entropy: 1, recall: 0.6168, relative_absolute_error: 0.9333, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4951, root_relative_squared_error: 0.9902, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, recall: 0.6304, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7704, f_measure: 0.763, kappa: 0.4903, kb_relative_information_score: 86.2211, mean_absolute_error: 0.4011, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7626, predictive_accuracy: 0.7636, prior_entropy: 1, recall: 0.7636, relative_absolute_error: 0.8022, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4437, root_relative_squared_error: 0.8874, run_cpu_time: 0.08,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, recall: 0.6304, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, ram_hours: 0, recall: 0.6304, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8395, f_measure: 0.7962, kappa: 0.5561, kb_relative_information_score: 165.6426, mean_absolute_error: 0.2896, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.8003, predictive_accuracy: 0.8016, prior_entropy: 1, ram_hours: 0, recall: 0.8016, relative_absolute_error: 0.5791, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.3855, root_relative_squared_error: 0.7711, run_cpu_time: 0.96,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5761, f_measure: 0.5594, kappa: 0.075, kb_relative_information_score: 39.3442, mean_absolute_error: 0.4502, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6034, predictive_accuracy: 0.6359, prior_entropy: 1, ram_hours: 0, recall: 0.6359, relative_absolute_error: 0.9004, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4958, root_relative_squared_error: 0.9916, run_cpu_time: 0.0718,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6567, f_measure: 0.6371, kappa: 0.2184, kb_relative_information_score: 67.7285, mean_absolute_error: 0.4159, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6359, predictive_accuracy: 0.6386, prior_entropy: 1, ram_hours: 0, recall: 0.6386, relative_absolute_error: 0.8318, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4774, root_relative_squared_error: 0.9548, run_cpu_time: 0.0035,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4601, f_measure: 0.5234, kappa: 0.0159, kb_relative_information_score: 27.0878, mean_absolute_error: 0.4715, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5535, predictive_accuracy: 0.6196, prior_entropy: 1, ram_hours: 0, recall: 0.6196, relative_absolute_error: 0.9429, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4893, root_relative_squared_error: 0.9786, run_cpu_time: 0.0037,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, ram_hours: 0, recall: 0.6304, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8061, f_measure: 0.7812, kappa: 0.534, kb_relative_information_score: 162.9149, mean_absolute_error: 0.2909, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7835, predictive_accuracy: 0.7799, prior_entropy: 1, ram_hours: 0, recall: 0.7799, relative_absolute_error: 0.5818, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4155, root_relative_squared_error: 0.8311, run_cpu_time: 0.05,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8061, f_measure: 0.7812, kappa: 0.534, kb_relative_information_score: 162.9149, mean_absolute_error: 0.2909, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7835, predictive_accuracy: 0.7799, prior_entropy: 1, ram_hours: 0, recall: 0.7799, relative_absolute_error: 0.5818, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4155, root_relative_squared_error: 0.8311, run_cpu_time: 0.06,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4873, f_measure: 0.5157, kappa: -0.0248, kb_relative_information_score: 8, mean_absolute_error: 0.4891, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5224, predictive_accuracy: 0.5109, prior_entropy: 1, recall: 0.5109, relative_absolute_error: 0.9783, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6994, root_relative_squared_error: 1.3988,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7879, f_measure: 0.7688, kappa: 0.5118, kb_relative_information_score: 186.0151, mean_absolute_error: 0.2502, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.775, predictive_accuracy: 0.7663, prior_entropy: 1, ram_hours: 0, recall: 0.7663, relative_absolute_error: 0.5003, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4468, root_relative_squared_error: 0.8937, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4875, kb_relative_information_score: 96, mean_absolute_error: 0.3696, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.3974, predictive_accuracy: 0.6304, prior_entropy: 1, recall: 0.6304, relative_absolute_error: 0.7391, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6079, root_relative_squared_error: 1.2158,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs