Task
Supervised Data Stream Classification on colic

Supervised Data Stream Classification on colic

Task 2193 Supervised Data Stream Classification colic 25 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

25 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6963, f_measure: 0.6678, kappa: 0.2463, kb_relative_information_score: 88.8471, mean_absolute_error: 0.388, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6644, predictive_accuracy: 0.6739, prior_entropy: 1, ram_hours: 0, recall: 0.6739, relative_absolute_error: 0.7761, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4715, root_relative_squared_error: 0.943, run_cpu_time: 2.81,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, kb_relative_information_score: 120, mean_absolute_error: 0.337, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 0.6739, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5805, root_relative_squared_error: 1.161, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4293, f_measure: 0.5287, kb_relative_information_score: 47.7079, mean_absolute_error: 0.448, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 0.8959, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4768, root_relative_squared_error: 0.9536, run_cpu_time: 0.03,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5351, f_measure: 0.6017, kappa: 0.084, kb_relative_information_score: 52.7144, mean_absolute_error: 0.4369, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5981, predictive_accuracy: 0.6386, prior_entropy: 1, recall: 0.6386, relative_absolute_error: 0.8738, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5134, root_relative_squared_error: 1.0269, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4527, f_measure: 0.5109, kappa: -0.0947, kb_relative_information_score: 8, mean_absolute_error: 0.4891, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5109, predictive_accuracy: 0.5109, prior_entropy: 1, recall: 0.5109, relative_absolute_error: 0.9783, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6994, root_relative_squared_error: 1.3988, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4969, f_measure: 0.5573, kappa: 0.036, kb_relative_information_score: 62.0679, mean_absolute_error: 0.4283, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6277, predictive_accuracy: 0.6658, prior_entropy: 1, recall: 0.6658, relative_absolute_error: 0.8565, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4819, root_relative_squared_error: 0.9638, run_cpu_time: 0.11,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7824, f_measure: 0.6751, kappa: 0.3704, kb_relative_information_score: 114.5531, mean_absolute_error: 0.3458, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7642, predictive_accuracy: 0.6685, prior_entropy: 1, recall: 0.6685, relative_absolute_error: 0.6915, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5329, root_relative_squared_error: 1.0658, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7575, f_measure: 0.7138, kappa: 0.3915, kb_relative_information_score: 75.0667, mean_absolute_error: 0.4119, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7375, predictive_accuracy: 0.7065, prior_entropy: 1, ram_hours: 0, recall: 0.7065, relative_absolute_error: 0.8238, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4519, root_relative_squared_error: 0.9038, run_cpu_time: 2.68,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.622, f_measure: 0.6241, kappa: 0.163, kb_relative_information_score: 34.8961, mean_absolute_error: 0.4594, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6261, predictive_accuracy: 0.6223, prior_entropy: 1, recall: 0.6223, relative_absolute_error: 0.9188, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4906, root_relative_squared_error: 0.9811, run_cpu_time: 1.48,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4293, f_measure: 0.5287, kb_relative_information_score: 47.7079, mean_absolute_error: 0.448, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 0.8959, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4768, root_relative_squared_error: 0.9536, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5351, f_measure: 0.6017, kappa: 0.084, kb_relative_information_score: 52.7144, mean_absolute_error: 0.4369, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5981, predictive_accuracy: 0.6386, prior_entropy: 1, recall: 0.6386, relative_absolute_error: 0.8738, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5134, root_relative_squared_error: 1.0269, run_cpu_time: 0.05,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6212, f_measure: 0.6242, kappa: 0.1574, kb_relative_information_score: 35.1759, mean_absolute_error: 0.4591, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6235, predictive_accuracy: 0.625, prior_entropy: 1, recall: 0.625, relative_absolute_error: 0.9181, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4904, root_relative_squared_error: 0.9808, run_cpu_time: 0.24,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, ram_hours: 0, recall: 0.663, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.008,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, kb_relative_information_score: 120, mean_absolute_error: 0.337, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, ram_hours: 0, recall: 0.663, relative_absolute_error: 0.6739, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5805, root_relative_squared_error: 1.161, run_cpu_time: 0.0072,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5684, f_measure: 0.6172, kappa: 0.1383, kb_relative_information_score: 88, mean_absolute_error: 0.3804, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6151, predictive_accuracy: 0.6196, prior_entropy: 1, recall: 0.6196, relative_absolute_error: 0.7609, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6168, root_relative_squared_error: 1.2336,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4527, f_measure: 0.5109, kappa: -0.0947, kb_relative_information_score: 8, mean_absolute_error: 0.4891, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.5109, predictive_accuracy: 0.5109, prior_entropy: 1, ram_hours: 0, recall: 0.5109, relative_absolute_error: 0.9783, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.6994, root_relative_squared_error: 1.3988, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5364, f_measure: 0.5629, kappa: 0.0462, kb_relative_information_score: 64.7147, mean_absolute_error: 0.4249, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6417, predictive_accuracy: 0.6685, prior_entropy: 1, ram_hours: 0, recall: 0.6685, relative_absolute_error: 0.8499, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4816, root_relative_squared_error: 0.9633, run_cpu_time: 9.3,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.5287, mean_absolute_error: 0.5, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.4396, predictive_accuracy: 0.663, prior_entropy: 1, recall: 0.663, relative_absolute_error: 1, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.5, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6963, f_measure: 0.6678, kappa: 0.2463, kb_relative_information_score: 88.8471, mean_absolute_error: 0.388, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6644, predictive_accuracy: 0.6739, prior_entropy: 1, ram_hours: 0, recall: 0.6739, relative_absolute_error: 0.7761, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4715, root_relative_squared_error: 0.943, run_cpu_time: 3,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6167, f_measure: 0.6485, kappa: 0.1968, kb_relative_information_score: 74.5028, mean_absolute_error: 0.407, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.6438, predictive_accuracy: 0.6603, prior_entropy: 1, ram_hours: 0, recall: 0.6603, relative_absolute_error: 0.814, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4721, root_relative_squared_error: 0.9442, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7538, f_measure: 0.7117, kappa: 0.3958, kb_relative_information_score: 76.0307, mean_absolute_error: 0.4108, mean_prior_absolute_error: 0.5, number_of_instances: 368, precision: 0.7441, predictive_accuracy: 0.7038, prior_entropy: 1, ram_hours: 0, recall: 0.7038, relative_absolute_error: 0.8217, root_mean_prior_squared_error: 0.5, root_mean_squared_error: 0.4528, root_relative_squared_error: 0.9055, run_cpu_time: 1.78,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs