Task
Supervised Data Stream Classification on lymph

Supervised Data Stream Classification on lymph

Task 2178 Supervised Data Stream Classification lymph 25 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

25 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8405, f_measure: 0.7389, kappa: 0.5244, kb_relative_information_score: 92.0101, mean_absolute_error: 0.179, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7391, predictive_accuracy: 0.75, prior_entropy: 2, recall: 0.75, relative_absolute_error: 0.4773, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3107, root_relative_squared_error: 0.7175, run_cpu_time: 0.21,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5084, f_measure: 0.5252, kappa: 0.0913, kb_relative_information_score: 63.8999, mean_absolute_error: 0.2687, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.5145, predictive_accuracy: 0.5405, prior_entropy: 2, recall: 0.5405, relative_absolute_error: 0.7167, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3748, root_relative_squared_error: 0.8655, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7194, f_measure: 0.6673, kappa: 0.3794, kb_relative_information_score: 76.8466, mean_absolute_error: 0.2202, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.6737, predictive_accuracy: 0.6689, prior_entropy: 2, recall: 0.6689, relative_absolute_error: 0.5873, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3453, root_relative_squared_error: 0.7974, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8276, f_measure: 0.7657, kappa: 0.5441, kb_relative_information_score: 102.2991, mean_absolute_error: 0.1361, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7876, predictive_accuracy: 0.7568, prior_entropy: 2, recall: 0.7568, relative_absolute_error: 0.363, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3148, root_relative_squared_error: 0.7271, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.835, f_measure: 0.7775, kappa: 0.5589, kb_relative_information_score: 104.7086, mean_absolute_error: 0.1282, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.8085, predictive_accuracy: 0.7635, prior_entropy: 2, recall: 0.7635, relative_absolute_error: 0.3419, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.314, root_relative_squared_error: 0.7251, run_cpu_time: 0.01,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, mean_absolute_error: 0.375, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, recall: 0.0135, relative_absolute_error: 1, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.433, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, mean_absolute_error: 0.375, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, recall: 0.0135, relative_absolute_error: 1, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.433, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8088, f_measure: 0.7393, kappa: 0.5054, kb_relative_information_score: 100.1619, mean_absolute_error: 0.1426, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7478, predictive_accuracy: 0.7432, prior_entropy: 2, recall: 0.7432, relative_absolute_error: 0.3803, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3174, root_relative_squared_error: 0.733, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8188, f_measure: 0.755, kappa: 0.5437, kb_relative_information_score: 95.6061, mean_absolute_error: 0.1667, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.747, predictive_accuracy: 0.7635, prior_entropy: 2, recall: 0.7635, relative_absolute_error: 0.4444, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3079, root_relative_squared_error: 0.7112, run_cpu_time: 0.13,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, mean_absolute_error: 0.375, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, recall: 0.0135, relative_absolute_error: 1, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.433, root_relative_squared_error: 1, run_cpu_time: 0.02,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5084, f_measure: 0.5252, kappa: 0.0913, kb_relative_information_score: 63.8999, mean_absolute_error: 0.2687, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.5145, predictive_accuracy: 0.5405, prior_entropy: 2, ram_hours: 0, recall: 0.5405, relative_absolute_error: 0.7167, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3748, root_relative_squared_error: 0.8655, run_cpu_time: 0.003,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, mean_absolute_error: 0.375, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, ram_hours: 0, recall: 0.0135, relative_absolute_error: 1, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.433, root_relative_squared_error: 1, run_cpu_time: 0.0026,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8276, f_measure: 0.7657, kappa: 0.5441, kb_relative_information_score: 102.2991, mean_absolute_error: 0.1361, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7876, predictive_accuracy: 0.7568, prior_entropy: 2, ram_hours: 0, recall: 0.7568, relative_absolute_error: 0.363, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3148, root_relative_squared_error: 0.7271, run_cpu_time: 0.0039,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, kb_relative_information_score: -28.2977, mean_absolute_error: 0.4932, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, ram_hours: 0, recall: 0.0135, relative_absolute_error: 1.3153, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.7023, root_relative_squared_error: 1.6219, run_cpu_time: 0.003,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8188, f_measure: 0.755, kappa: 0.5437, kb_relative_information_score: 95.6061, mean_absolute_error: 0.1667, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.747, predictive_accuracy: 0.7635, prior_entropy: 2, recall: 0.7635, relative_absolute_error: 0.4444, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3079, root_relative_squared_error: 0.7112, run_cpu_time: 0.24,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, mean_absolute_error: 0.375, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, recall: 0.0135, relative_absolute_error: 1, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.433, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.504, f_measure: 0.3889, kappa: 0.0079, kb_relative_information_score: 67.0962, mean_absolute_error: 0.2264, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.3016, predictive_accuracy: 0.5473, prior_entropy: 2, recall: 0.5473, relative_absolute_error: 0.6036, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.4758, root_relative_squared_error: 1.0987,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8387, f_measure: 0.7323, kappa: 0.5107, kb_relative_information_score: 92.0222, mean_absolute_error: 0.1789, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7309, predictive_accuracy: 0.7432, prior_entropy: 2, ram_hours: 0, recall: 0.7432, relative_absolute_error: 0.477, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3107, root_relative_squared_error: 0.7175, run_cpu_time: 0.008,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.504, f_measure: 0.3889, kappa: 0.0079, kb_relative_information_score: 67.0962, mean_absolute_error: 0.2264, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.3016, predictive_accuracy: 0.5473, prior_entropy: 2, recall: 0.5473, relative_absolute_error: 0.6036, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.4758, root_relative_squared_error: 1.0987, run_cpu_time: 0.05,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8197, f_measure: 0.7855, kappa: 0.5944, kb_relative_information_score: 104.2118, mean_absolute_error: 0.1327, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7943, predictive_accuracy: 0.7905, prior_entropy: 2, ram_hours: 0, recall: 0.7905, relative_absolute_error: 0.3538, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3025, root_relative_squared_error: 0.6986, run_cpu_time: 0.0472,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.826, f_measure: 0.7794, kappa: 0.5945, kb_relative_information_score: 101.9038, mean_absolute_error: 0.1424, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7687, predictive_accuracy: 0.7905, prior_entropy: 2, ram_hours: 0, recall: 0.7905, relative_absolute_error: 0.3798, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3021, root_relative_squared_error: 0.6976, run_cpu_time: 0.0275,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.826, f_measure: 0.7794, kappa: 0.5945, kb_relative_information_score: 101.9038, mean_absolute_error: 0.1424, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.7687, predictive_accuracy: 0.7905, prior_entropy: 2, ram_hours: 0, recall: 0.7905, relative_absolute_error: 0.3798, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.3021, root_relative_squared_error: 0.6976, run_cpu_time: 0.0318,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5342, f_measure: 0.502, kappa: 0.0624, kb_relative_information_score: 58.6436, mean_absolute_error: 0.25, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.504, predictive_accuracy: 0.5, prior_entropy: 2, recall: 0.5, relative_absolute_error: 0.6667, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.5, root_relative_squared_error: 1.1547,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, mean_absolute_error: 0.375, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, recall: 0.0135, relative_absolute_error: 1, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.433, root_relative_squared_error: 1,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.0004, kb_relative_information_score: -28.2977, mean_absolute_error: 0.4932, mean_prior_absolute_error: 0.375, number_of_instances: 148, precision: 0.0002, predictive_accuracy: 0.0135, prior_entropy: 2, recall: 0.0135, relative_absolute_error: 1.3153, root_mean_prior_squared_error: 0.433, root_mean_squared_error: 0.7023, root_relative_squared_error: 1.6219,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    Given a dataset with a nominal target, various data samples of increasing size are defined. A model is build for each individual data sample; from this a learning curve can be drawn.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs