Run
9809438

Run 9809438

Task 125920 (Supervised Classification) dresses-sales Uploaded 22-10-2018 by Scikit-learn Bot
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,svc=sklearn.svm.classes.SVC)(1)Automatically created scikit-learn flow.
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"median"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.svm.classes.SVC(22)_C1220.1555145357115
sklearn.svm.classes.SVC(22)_cache_size200
sklearn.svm.classes.SVC(22)_class_weightnull
sklearn.svm.classes.SVC(22)_coef0-0.2943320154646565
sklearn.svm.classes.SVC(22)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(22)_degree4
sklearn.svm.classes.SVC(22)_gamma0.06815782155842123
sklearn.svm.classes.SVC(22)_kernel"poly"
sklearn.svm.classes.SVC(22)_max_iter-1
sklearn.svm.classes.SVC(22)_probabilityfalse
sklearn.svm.classes.SVC(22)_random_state2586
sklearn.svm.classes.SVC(22)_shrinkingtrue
sklearn.svm.classes.SVC(22)_tol0.0005340690080662402
sklearn.svm.classes.SVC(22)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.feature_selection.variance_threshold.VarianceThreshold(18)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_memorynull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.436 ± 0.0667
Per class
Cross-validation details (10-fold Crossvalidation)
0.4467 ± 0.0673
Per class
Cross-validation details (10-fold Crossvalidation)
-0.1264 ± 0.1309
Cross-validation details (10-fold Crossvalidation)
-77.007 ± 7.1757
Cross-validation details (10-fold Crossvalidation)
0.556 ± 0.0692
Cross-validation details (10-fold Crossvalidation)
0.4873
Cross-validation details (10-fold Crossvalidation)
500
Per class
Cross-validation details (10-fold Crossvalidation)
0.4508 ± 0.065
Per class
Cross-validation details (10-fold Crossvalidation)
0.444 ± 0.0692
Cross-validation details (10-fold Crossvalidation)
0.9816
Cross-validation details (10-fold Crossvalidation)
0.444 ± 0.0692
Per class
Cross-validation details (10-fold Crossvalidation)
1.1411 ± 0.1419
Cross-validation details (10-fold Crossvalidation)
0.4936
Cross-validation details (10-fold Crossvalidation)
0.7457 ± 0.0462
Cross-validation details (10-fold Crossvalidation)
1.5108 ± 0.0936
Cross-validation details (10-fold Crossvalidation)