Run
9704833

Run 9704833

Task 9946 (Supervised Classification) wdbc Uploaded 21-10-2018 by Scikit-learn Bot
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,svc=sklearn.svm.classes.SVC)(1)Automatically created scikit-learn flow.
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.svm.classes.SVC(22)_C22.969805764176286
sklearn.svm.classes.SVC(22)_cache_size200
sklearn.svm.classes.SVC(22)_class_weightnull
sklearn.svm.classes.SVC(22)_coef0-0.5646917155857973
sklearn.svm.classes.SVC(22)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(22)_degree1
sklearn.svm.classes.SVC(22)_gamma0.028558471861920596
sklearn.svm.classes.SVC(22)_kernel"poly"
sklearn.svm.classes.SVC(22)_max_iter-1
sklearn.svm.classes.SVC(22)_probabilityfalse
sklearn.svm.classes.SVC(22)_random_state6892
sklearn.svm.classes.SVC(22)_shrinkingtrue
sklearn.svm.classes.SVC(22)_tol0.0005432945867470648
sklearn.svm.classes.SVC(22)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.feature_selection.variance_threshold.VarianceThreshold(18)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_memorynull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9694 ± 0.0337
Per class
Cross-validation details (10-fold Crossvalidation)
0.9736 ± 0.0291
Per class
Cross-validation details (10-fold Crossvalidation)
0.9433 ± 0.0625
Cross-validation details (10-fold Crossvalidation)
535.8061 ± 3.4183
Cross-validation details (10-fold Crossvalidation)
0.0264 ± 0.0289
Cross-validation details (10-fold Crossvalidation)
0.4676 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
569
Per class
Cross-validation details (10-fold Crossvalidation)
0.9737 ± 0.0281
Per class
Cross-validation details (10-fold Crossvalidation)
0.9736 ± 0.0289
Cross-validation details (10-fold Crossvalidation)
0.953
Cross-validation details (10-fold Crossvalidation)
0.9736 ± 0.0289
Per class
Cross-validation details (10-fold Crossvalidation)
0.0564 ± 0.0618
Cross-validation details (10-fold Crossvalidation)
0.4835 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.1624 ± 0.1216
Cross-validation details (10-fold Crossvalidation)
0.3358 ± 0.2511
Cross-validation details (10-fold Crossvalidation)