Run
9683795

Run 9683795

Task 14964 (Supervised Classification) artificial-characters Uploaded 20-10-2018 by Scikit-learn Bot
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,svc=sklearn.svm.classes.SVC)(1)Automatically created scikit-learn flow.
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"median"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.svm.classes.SVC(22)_C2.3661829452705243
sklearn.svm.classes.SVC(22)_cache_size200
sklearn.svm.classes.SVC(22)_class_weightnull
sklearn.svm.classes.SVC(22)_coef00.5269380837193662
sklearn.svm.classes.SVC(22)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(22)_degree4
sklearn.svm.classes.SVC(22)_gamma0.0020818302410858785
sklearn.svm.classes.SVC(22)_kernel"poly"
sklearn.svm.classes.SVC(22)_max_iter-1
sklearn.svm.classes.SVC(22)_probabilityfalse
sklearn.svm.classes.SVC(22)_random_state26688
sklearn.svm.classes.SVC(22)_shrinkingtrue
sklearn.svm.classes.SVC(22)_tol8.081148452374477e-05
sklearn.svm.classes.SVC(22)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.feature_selection.variance_threshold.VarianceThreshold(18)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_memorynull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.6249 ± 0.0068
Per class
Cross-validation details (10-fold Crossvalidation)
0.2767 ± 0.011
Per class
Cross-validation details (10-fold Crossvalidation)
0.2492 ± 0.0137
Cross-validation details (10-fold Crossvalidation)
2937.6346 ± 12.8423
Cross-validation details (10-fold Crossvalidation)
0.133 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.179 ± 0
Cross-validation details (10-fold Crossvalidation)
10218
Per class
Cross-validation details (10-fold Crossvalidation)
0.3183 ± 0.029
Per class
Cross-validation details (10-fold Crossvalidation)
0.3349 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
3.2849
Cross-validation details (10-fold Crossvalidation)
0.3349 ± 0.0124
Per class
Cross-validation details (10-fold Crossvalidation)
0.7431 ± 0.0139
Cross-validation details (10-fold Crossvalidation)
0.2992 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3647 ± 0.0034
Cross-validation details (10-fold Crossvalidation)
1.2191 ± 0.0114
Cross-validation details (10-fold Crossvalidation)