Run
9548511

Run 9548511

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 11-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),mlpclassifier=sklearn.n eural_network.multilayer_perceptron.MLPClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"median"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),mlpclassifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier)(1)_memorynull
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_activation"tanh"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_alpha0.0004010679129647204
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_batch_size1879
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_beta_10.9
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_beta_20.999
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_early_stoppingtrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_epsilon1e-08
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_hidden_layer_sizes966
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_learning_rate"constant"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_learning_rate_init0.00015670632508380842
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_max_iter777
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_momentum0.24617792808641792
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_n_iter_no_change412
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_nesterovs_momentumfalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_power_t0.016449232795232287
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_random_state13565
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_shuffletrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_solver"sgd"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_tol0.0010565811414893706
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_validation_fraction0.5379100195848197
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_verbosefalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.5003
Per class
Cross-validation details (10-fold Crossvalidation)
-240.7383 ± 0.1444
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.5512 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.9924
Cross-validation details (10-fold Crossvalidation)
0.5512 ± 0.0003
Per class
Cross-validation details (10-fold Crossvalidation)
1.0106 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.0053 ± 0.0001
Cross-validation details (10-fold Crossvalidation)