Run
9547140

Run 9547140

Task 3021 (Supervised Classification) sick Uploaded 11-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),adaboostclassifier=skle arn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree .tree.DecisionTreeClassifier))(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.tree.tree.DecisionTreeClassifier(29)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(29)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(29)_max_depth2
sklearn.tree.tree.DecisionTreeClassifier(29)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(29)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(29)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(29)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(29)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(29)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(29)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(29)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(29)_random_state12213
sklearn.tree.tree.DecisionTreeClassifier(29)_splitter"best"
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),adaboostclassifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_memorynull
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(8)_algorithm"SAMME.R"
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(8)_learning_rate1.0245055051661345
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(8)_n_estimators322
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(8)_random_state14090

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7827 ± 0.0316
Per class
Cross-validation details (10-fold Crossvalidation)
0.909 ± 0.0042
Per class
Cross-validation details (10-fold Crossvalidation)
0.0154 ± 0.0357
Cross-validation details (10-fold Crossvalidation)
-28878.0591 ± 60.5021
Cross-validation details (10-fold Crossvalidation)
0.4718 ± 0.0075
Cross-validation details (10-fold Crossvalidation)
0.1152 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
3772
Per class
Cross-validation details (10-fold Crossvalidation)
0.892 ± 0.0144
Per class
Cross-validation details (10-fold Crossvalidation)
0.9356 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.3333
Cross-validation details (10-fold Crossvalidation)
0.9356 ± 0.0033
Per class
Cross-validation details (10-fold Crossvalidation)
4.0963 ± 0.0648
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.4754 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
1.9828 ± 0.017
Cross-validation details (10-fold Crossvalidation)