Run
9533758

Run 9533758

Task 23 (Supervised Classification) cmc Uploaded 11-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),gradientboostingclassif ier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(1)_memorynull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_criterion"friedman_mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_learning_rate1.200061791702799
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_max_depth9
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_max_features0.08556207011306383
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_impurity_decrease0.29834336649475457
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_impurity_splitnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_samples_leaf14
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_samples_split19
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_weight_fraction_leaf0.2239882534874575
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_n_estimators484
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_n_iter_no_change144
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_random_state24734
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_subsample0.9021901092930803
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_tol0.020172905601092864
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_validation_fraction0.38473073461046803
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.6122 ± 0.0323
Per class
Cross-validation details (10-fold Crossvalidation)
0.4411 ± 0.0445
Per class
Cross-validation details (10-fold Crossvalidation)
0.1399 ± 0.068
Cross-validation details (10-fold Crossvalidation)
156.7533 ± 2.8041
Cross-validation details (10-fold Crossvalidation)
0.4094 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.4308 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
1473
Per class
Cross-validation details (10-fold Crossvalidation)
0.4422 ± 0.0472
Per class
Cross-validation details (10-fold Crossvalidation)
0.4501 ± 0.0441
Cross-validation details (10-fold Crossvalidation)
1.5392
Cross-validation details (10-fold Crossvalidation)
0.4501 ± 0.0441
Per class
Cross-validation details (10-fold Crossvalidation)
0.9503 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
0.4641 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4566 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.9837 ± 0.0151
Cross-validation details (10-fold Crossvalidation)