Run
9526348

Run 9526348

Task 125920 (Supervised Classification) dresses-sales Uploaded 11-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier= sklearn.ensemble.forest.RandomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"median"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
sklearn.ensemble.forest.RandomForestClassifier(44)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(44)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(44)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(44)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(44)_max_features0.8517733338600537
sklearn.ensemble.forest.RandomForestClassifier(44)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(44)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(44)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(44)_min_samples_leaf7
sklearn.ensemble.forest.RandomForestClassifier(44)_min_samples_split6
sklearn.ensemble.forest.RandomForestClassifier(44)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(44)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(44)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(44)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(44)_random_state18558
sklearn.ensemble.forest.RandomForestClassifier(44)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(44)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.6188 ± 0.0762
Per class
Cross-validation details (10-fold Crossvalidation)
0.5939 ± 0.0552
Per class
Cross-validation details (10-fold Crossvalidation)
0.1638 ± 0.1106
Cross-validation details (10-fold Crossvalidation)
38.0322 ± 2.3817
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0195
Cross-validation details (10-fold Crossvalidation)
0.4873
Cross-validation details (10-fold Crossvalidation)
500
Per class
Cross-validation details (10-fold Crossvalidation)
0.5993 ± 0.0542
Per class
Cross-validation details (10-fold Crossvalidation)
0.61 ± 0.0474
Cross-validation details (10-fold Crossvalidation)
0.9816
Cross-validation details (10-fold Crossvalidation)
0.61 ± 0.0474
Per class
Cross-validation details (10-fold Crossvalidation)
0.9327 ± 0.0401
Cross-validation details (10-fold Crossvalidation)
0.4936
Cross-validation details (10-fold Crossvalidation)
0.4856 ± 0.0181
Cross-validation details (10-fold Crossvalidation)
0.9839 ± 0.0367
Cross-validation details (10-fold Crossvalidation)