Run
9500754

Run 9500754

Task 125923 (Supervised Classification) Australian Uploaded 10-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),sgdclassifier=sklearn.l inear_model.stochastic_gradient.SGDClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_alpha0.03037273973107261
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_averagefalse
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_class_weightnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_early_stoppingfalse
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_epsilon0.0041698170568699
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_eta00.0
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_fit_intercepttrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_l1_ratio0.07158826678848786
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_learning_rate"optimal"
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_loss"modified_huber"
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_max_iternull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_n_iternull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_n_iter_no_change5
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_n_jobsnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_penalty"elasticnet"
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_power_t0.5
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_random_state51239
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_shuffletrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_tol0.07007801378014906
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_validation_fraction0.1
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_verbose0
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.4938
Per class
Cross-validation details (10-fold Crossvalidation)
-12.9397 ± 0.1646
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.494 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
690
Per class
Cross-validation details (10-fold Crossvalidation)
0.4449 ± 0.007
Cross-validation details (10-fold Crossvalidation)
0.9913
Cross-validation details (10-fold Crossvalidation)
0.4449 ± 0.007
Per class
Cross-validation details (10-fold Crossvalidation)
1.0123 ± 0.0016
Cross-validation details (10-fold Crossvalidation)
0.497 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.0062 ± 0.0016
Cross-validation details (10-fold Crossvalidation)