Run
9423869

Run 9423869

Task 2079 (Supervised Classification) eucalyptus Uploaded 10-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),extratreesclassifier=sk learn.ensemble.forest.ExtraTreesClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),extratreesclassifier=sklearn.ensemble.forest.ExtraTreesClassifier)(1)_memorynull
sklearn.ensemble.forest.ExtraTreesClassifier(10)_bootstraptrue
sklearn.ensemble.forest.ExtraTreesClassifier(10)_class_weightnull
sklearn.ensemble.forest.ExtraTreesClassifier(10)_criterion"gini"
sklearn.ensemble.forest.ExtraTreesClassifier(10)_max_depthnull
sklearn.ensemble.forest.ExtraTreesClassifier(10)_max_features0.09488051319555102
sklearn.ensemble.forest.ExtraTreesClassifier(10)_max_leaf_nodesnull
sklearn.ensemble.forest.ExtraTreesClassifier(10)_min_impurity_decrease0.0
sklearn.ensemble.forest.ExtraTreesClassifier(10)_min_impurity_splitnull
sklearn.ensemble.forest.ExtraTreesClassifier(10)_min_samples_leaf11
sklearn.ensemble.forest.ExtraTreesClassifier(10)_min_samples_split2
sklearn.ensemble.forest.ExtraTreesClassifier(10)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.ExtraTreesClassifier(10)_n_estimators100
sklearn.ensemble.forest.ExtraTreesClassifier(10)_n_jobsnull
sklearn.ensemble.forest.ExtraTreesClassifier(10)_oob_scorefalse
sklearn.ensemble.forest.ExtraTreesClassifier(10)_random_state49794
sklearn.ensemble.forest.ExtraTreesClassifier(10)_verbose0
sklearn.ensemble.forest.ExtraTreesClassifier(10)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7303 ± 0.041
Per class
Cross-validation details (10-fold Crossvalidation)
0.4232 ± 0.0642
Per class
Cross-validation details (10-fold Crossvalidation)
0.2703 ± 0.0825
Cross-validation details (10-fold Crossvalidation)
160.5238 ± 2.1311
Cross-validation details (10-fold Crossvalidation)
0.2677 ± 0.0083
Cross-validation details (10-fold Crossvalidation)
0.3132 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
736
Per class
Cross-validation details (10-fold Crossvalidation)
0.4289 ± 0.0645
Per class
Cross-validation details (10-fold Crossvalidation)
0.4416 ± 0.065
Cross-validation details (10-fold Crossvalidation)
2.2629
Cross-validation details (10-fold Crossvalidation)
0.4416 ± 0.065
Per class
Cross-validation details (10-fold Crossvalidation)
0.8548 ± 0.0264
Cross-validation details (10-fold Crossvalidation)
0.3957 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.3643 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
0.9207 ± 0.0215
Cross-validation details (10-fold Crossvalidation)