Run
9423023

Run 9423023

Task 3561 (Supervised Classification) profb Uploaded 10-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Add a single new tag. Use underscores for spaces. Press enter when done.
Add tag
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier= sklearn.ensemble.forest.RandomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
sklearn.ensemble.forest.RandomForestClassifier(44)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(44)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(44)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(44)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(44)_max_features0.3106213955988065
sklearn.ensemble.forest.RandomForestClassifier(44)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(44)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(44)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(44)_min_samples_leaf7
sklearn.ensemble.forest.RandomForestClassifier(44)_min_samples_split16
sklearn.ensemble.forest.RandomForestClassifier(44)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(44)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(44)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(44)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(44)_random_state56424
sklearn.ensemble.forest.RandomForestClassifier(44)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(44)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.467 ± 0.1136
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.20.30.40.50.60.70.8
0.5303 ± 0.0319
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.450.4750.50.5250.550.5750.6
-0.0481 ± 0.0915
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore0-0.3-0.25-0.2-0.15-0.1-0.0500.…0.05
-35.7278 ± 4.7717
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore0-15-10-50510
0.45 ± 0.0234
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.40.50.4250.450.4750.5…0.525
0.4446 ± 0.0022
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4420.4430.4440.4450.4460.4470.4480.…0.449
672
Per class
Cross-validation details (10-fold Crossvalidation)
0.4957 ± 0.0803
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.40.450.50.550.60.65
0.6324 ± 0.0501
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.50.550.60.650.70.45
0.9188
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.9188
0.6324 ± 0.0501
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.50.550.60.650.70.45
1.0122 ± 0.0527
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.9511.051.11.15
0.4714 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4690.470.4710.4720.4730.4740.4750.…0.476
0.4935 ± 0.0268
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.50.4250.450.4750.5250.55
1.0468 ± 0.0568
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.9511.051.11.151.2
­