Run
9410669

Run 9410669

Task 14968 (Supervised Classification) cylinder-bands Uploaded 10-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),mlpclassifier=sklearn.n eural_network.multilayer_perceptron.MLPClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),mlpclassifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier)(1)_memorynull
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_activation"identity"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_alpha2.159627233386199e-05
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_batch_size1235
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_beta_10.9
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_beta_20.999
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_early_stoppingtrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_epsilon1e-08
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_hidden_layer_sizes937
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_learning_rate"constant"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_learning_rate_init0.002366836603597956
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_max_iter394
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_momentum0.22826441861154634
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_n_iter_no_change977
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_nesterovs_momentumtrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_power_t0.0037236488688632712
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_random_state55285
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_shufflefalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_solver"sgd"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_tol0.00012663640827932865
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_validation_fraction0.7197601809476942
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_verbosefalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(15)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7274 ± 0.0667
Per class
Cross-validation details (10-fold Crossvalidation)
0.642 ± 0.0699
Per class
Cross-validation details (10-fold Crossvalidation)
0.2948 ± 0.1097
Cross-validation details (10-fold Crossvalidation)
108.8377 ± 3.5902
Cross-validation details (10-fold Crossvalidation)
0.3978 ± 0.0293
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.7357 ± 0.0628
Per class
Cross-validation details (10-fold Crossvalidation)
0.6852 ± 0.0454
Cross-validation details (10-fold Crossvalidation)
0.9826
Cross-validation details (10-fold Crossvalidation)
0.6852 ± 0.0454
Per class
Cross-validation details (10-fold Crossvalidation)
0.8153 ± 0.0602
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.441 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.8928 ± 0.0461
Cross-validation details (10-fold Crossvalidation)