Run
9294381

Run 9294381

Task 23 (Supervised Classification) cmc Uploaded 10-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),gradientboostingclassif ier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(1)_memorynull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_criterion"friedman_mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_learning_rate0.22766470267190642
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_max_depth8
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_max_features0.8318455305260096
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_impurity_decrease0.3393915733160964
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_impurity_splitnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_samples_leaf8
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_samples_split16
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_min_weight_fraction_leaf0.006602298383029392
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_n_estimators220
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_n_iter_no_change324
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_random_state12701
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_subsample0.17681902223204726
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_tol0.050839167470066914
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_validation_fraction0.16224524980204136
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(14)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5976 ± 0.0364
Per class
Cross-validation details (10-fold Crossvalidation)
0.4378 ± 0.0328
Per class
Cross-validation details (10-fold Crossvalidation)
0.1352 ± 0.0515
Cross-validation details (10-fold Crossvalidation)
190.7659 ± 3.9989
Cross-validation details (10-fold Crossvalidation)
0.4045 ± 0.0107
Cross-validation details (10-fold Crossvalidation)
0.4308 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
1473
Per class
Cross-validation details (10-fold Crossvalidation)
0.4398 ± 0.0319
Per class
Cross-validation details (10-fold Crossvalidation)
0.4372 ± 0.0342
Cross-validation details (10-fold Crossvalidation)
1.5392
Cross-validation details (10-fold Crossvalidation)
0.4372 ± 0.0342
Per class
Cross-validation details (10-fold Crossvalidation)
0.939 ± 0.0251
Cross-validation details (10-fold Crossvalidation)
0.4641 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4685 ± 0.0102
Cross-validation details (10-fold Crossvalidation)
1.0094 ± 0.0222
Cross-validation details (10-fold Crossvalidation)