Run
9264224

Run 9264224

Task 3493 (Supervised Classification) monks-problems-2 Uploaded 09-10-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),sgdclassifier=sklearn.l inear_model.stochastic_gradient.SGDClassifier)(1)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.impute.MissingIndicator(1)_error_on_newfalse
sklearn.impute.MissingIndicator(1)_features"missing-only"
sklearn.impute.MissingIndicator(1)_missing_valuesNaN
sklearn.impute.MissingIndicator(1)_sparse"auto"
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_alpha0.014512629428381218
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_averagetrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_class_weightnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_early_stoppingfalse
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_epsilon0.1
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_eta00.09184451590033242
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_fit_intercepttrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_l1_ratio9.55577953934318e-09
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_learning_rate"constant"
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_loss"log"
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_max_iternull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_n_iternull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_n_iter_no_change5
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_n_jobsnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_penalty"elasticnet"
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_power_t0.5
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_random_state31179
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_shuffletrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_tol6.0033275268891915e-05
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_validation_fraction0.1
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_verbose0
sklearn.linear_model.stochastic_gradient.SGDClassifier(8)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5473 ± 0.1052
Per class
Cross-validation details (10-fold Crossvalidation)
0.5197 ± 0.015
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0066 ± 0.0138
Cross-validation details (10-fold Crossvalidation)
-10.8618 ± 2.4559
Cross-validation details (10-fold Crossvalidation)
0.447 ± 0.0134
Cross-validation details (10-fold Crossvalidation)
0.4507 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
601
Per class
Cross-validation details (10-fold Crossvalidation)
0.4312 ± 0.0156
Per class
Cross-validation details (10-fold Crossvalidation)
0.6539 ± 0.0105
Cross-validation details (10-fold Crossvalidation)
0.9279
Cross-validation details (10-fold Crossvalidation)
0.6539 ± 0.0105
Per class
Cross-validation details (10-fold Crossvalidation)
0.9917 ± 0.0277
Cross-validation details (10-fold Crossvalidation)
0.4746 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0112
Cross-validation details (10-fold Crossvalidation)
1.0041 ± 0.0213
Cross-validation details (10-fold Crossvalidation)