Run
9204492

Run 9204492

Task 15 (Supervised Classification) breast-w Uploaded 31-08-2018 by Hilde Weerts
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.19.1. study_98
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hote ncoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn. feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble .forest.RandomForestClassifier))(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(32)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(32)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(32)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(32)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(32)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(32)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(32)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(32)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(32)_random_state32127
sklearn.ensemble.forest.RandomForestClassifier(32)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(32)_warm_startfalse
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
hyperimp.utils.preprocessing.ConditionalImputer(1)_axis0
hyperimp.utils.preprocessing.ConditionalImputer(1)_categorical_features[]
hyperimp.utils.preprocessing.ConditionalImputer(1)_copytrue
hyperimp.utils.preprocessing.ConditionalImputer(1)_fill_empty0
hyperimp.utils.preprocessing.ConditionalImputer(1)_missing_values"NaN"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy"mean"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy_nominal"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer(1)_verbose0
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_cv5
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_fit_paramsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_iter100
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_jobs-1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_param_distributions{"clf__bootstrap": [true, false], "clf__criterion": ["gini", "entropy"], "clf__max_features": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.uniform_gen", "a": 0.0, "b": 1.0, "args": [], "kwds": {"loc": 0, "scale": 1}}}, "clf__min_samples_leaf": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 1, "b": 20, "args": [], "kwds": {"low": 1, "high": 21}}}, "clf__min_samples_split": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 2, "b": 20, "args": [], "kwds": {"low": 2, "high": 21}}}, "clf__n_estimators": [300], "clf__random_state": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 1, "b": 100000, "args": [], "kwds": {"low": 1, "high": 100001}}}}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_random_state219131
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_return_train_score"warn"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_verbose1

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.9915 ± 0.0068
Per class
Cross-validation details (10-fold Crossvalidation)
0.9672 ± 0.0203
Per class
Cross-validation details (10-fold Crossvalidation)
0.9275 ± 0.045
Cross-validation details (10-fold Crossvalidation)
596.2083 ± 3.4305
Cross-validation details (10-fold Crossvalidation)
0.0729 ± 0.0229
Cross-validation details (10-fold Crossvalidation)
0.4519 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
699
Per class
Cross-validation details (10-fold Crossvalidation)
0.9674 ± 0.0201
Per class
Cross-validation details (10-fold Crossvalidation)
0.9671 ± 0.0202
Cross-validation details (10-fold Crossvalidation)
0.9297
Cross-validation details (10-fold Crossvalidation)
0.9671 ± 0.0202
Per class
Cross-validation details (10-fold Crossvalidation)
0.1613 ± 0.0507
Cross-validation details (10-fold Crossvalidation)
0.4753 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
0.174 ± 0.0352
Cross-validation details (10-fold Crossvalidation)
0.3662 ± 0.0739
Cross-validation details (10-fold Crossvalidation)