keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPo
oling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Co
ncatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling
2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concate
nate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,C
onv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,
Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1) | Automatically created scikit-learn flow. |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_batch_size | 32 |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_build_fn | {"oml-python:serialized_object": "function", "value": "__main__.squeezenet_emnist_fmnist_5_32_False"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_epochs | 5 |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer0 | {"class_name": "InputLayer", "config": {"batch_input_shape": [null, 784], "dtype": "float32", "name": "input", "sparse": false}, "inbound_nodes": [], "name": "input"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer1 | {"class_name": "Reshape", "config": {"name": "reshape_8", "target_shape": [28, 28, 1], "trainable": false}, "inbound_nodes": [[["input", 0, 0, {}]]], "name": "reshape_8"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer10 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_104", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_103", 0, 0, {}]]], "name": "conv2d_104"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer11 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_105", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_103", 0, 0, {}]]], "name": "conv2d_105"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer12 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_26", "trainable": false}, "inbound_nodes": [[["conv2d_104", 0, 0, {}], ["conv2d_105", 0, 0, {}]]], "name": "concatenate_26"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer13 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_26", "trainable": false}, "inbound_nodes": [[["concatenate_26", 0, 0, {}]]], "name": "activation_26"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer14 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 32, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_106", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["activation_26", 0, 0, {}]]], "name": "conv2d_106"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer15 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_107", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_106", 0, 0, {}]]], "name": "conv2d_107"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer16 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_108", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_106", 0, 0, {}]]], "name": "conv2d_108"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer17 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_27", "trainable": false}, "inbound_nodes": [[["conv2d_107", 0, 0, {}], ["conv2d_108", 0, 0, {}]]], "name": "concatenate_27"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer18 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_27", "trainable": false}, "inbound_nodes": [[["concatenate_27", 0, 0, {}]]], "name": "activation_27"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer19 | {"class_name": "MaxPooling2D", "config": {"data_format": "channels_last", "name": "max_pooling2d_23", "padding": "valid", "pool_size": [2, 2], "strides": [2, 2], "trainable": false}, "inbound_nodes": [[["activation_27", 0, 0, {}]]], "name": "max_pooling2d_23"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer2 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 96, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_99", "padding": "valid", "strides": [2, 2], "trainable": false, "use_bias": true}, "inbound_nodes": [[["reshape_8", 0, 0, {}]]], "name": "conv2d_99"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer20 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 32, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_109", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["max_pooling2d_23", 0, 0, {}]]], "name": "conv2d_109"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer21 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_110", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_109", 0, 0, {}]]], "name": "conv2d_110"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer22 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_111", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_109", 0, 0, {}]]], "name": "conv2d_111"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer23 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_28", "trainable": false}, "inbound_nodes": [[["conv2d_110", 0, 0, {}], ["conv2d_111", 0, 0, {}]]], "name": "concatenate_28"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer24 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_28", "trainable": false}, "inbound_nodes": [[["concatenate_28", 0, 0, {}]]], "name": "activation_28"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer25 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 48, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_112", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["activation_28", 0, 0, {}]]], "name": "conv2d_112"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer26 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_113", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_112", 0, 0, {}]]], "name": "conv2d_113"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer27 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_114", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_112", 0, 0, {}]]], "name": "conv2d_114"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer28 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_29", "trainable": false}, "inbound_nodes": [[["conv2d_113", 0, 0, {}], ["conv2d_114", 0, 0, {}]]], "name": "concatenate_29"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer29 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_29", "trainable": false}, "inbound_nodes": [[["concatenate_29", 0, 0, {}]]], "name": "activation_29"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer3 | {"class_name": "MaxPooling2D", "config": {"data_format": "channels_last", "name": "max_pooling2d_22", "padding": "valid", "pool_size": [2, 2], "strides": [2, 2], "trainable": false}, "inbound_nodes": [[["conv2d_99", 0, 0, {}]]], "name": "max_pooling2d_22"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer30 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 48, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_115", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["activation_29", 0, 0, {}]]], "name": "conv2d_115"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer31 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_116", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_115", 0, 0, {}]]], "name": "conv2d_116"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer32 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_117", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_115", 0, 0, {}]]], "name": "conv2d_117"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer33 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_30", "trainable": false}, "inbound_nodes": [[["conv2d_116", 0, 0, {}], ["conv2d_117", 0, 0, {}]]], "name": "concatenate_30"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer34 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_30", "trainable": false}, "inbound_nodes": [[["concatenate_30", 0, 0, {}]]], "name": "activation_30"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer35 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_118", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["activation_30", 0, 0, {}]]], "name": "conv2d_118"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer36 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_119", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_118", 0, 0, {}]]], "name": "conv2d_119"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer37 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_120", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_118", 0, 0, {}]]], "name": "conv2d_120"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer38 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_31", "trainable": false}, "inbound_nodes": [[["conv2d_119", 0, 0, {}], ["conv2d_120", 0, 0, {}]]], "name": "concatenate_31"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer39 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_31", "trainable": false}, "inbound_nodes": [[["concatenate_31", 0, 0, {}]]], "name": "activation_31"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer4 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 16, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_100", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["max_pooling2d_22", 0, 0, {}]]], "name": "conv2d_100"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer40 | {"class_name": "MaxPooling2D", "config": {"data_format": "channels_last", "name": "max_pooling2d_24", "padding": "valid", "pool_size": [2, 2], "strides": [2, 2], "trainable": false}, "inbound_nodes": [[["activation_31", 0, 0, {}]]], "name": "max_pooling2d_24"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer41 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_121", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["max_pooling2d_24", 0, 0, {}]]], "name": "conv2d_121"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer42 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_122", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_121", 0, 0, {}]]], "name": "conv2d_122"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer43 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_123", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_121", 0, 0, {}]]], "name": "conv2d_123"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer44 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_32", "trainable": false}, "inbound_nodes": [[["conv2d_122", 0, 0, {}], ["conv2d_123", 0, 0, {}]]], "name": "concatenate_32"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer45 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_32", "trainable": false}, "inbound_nodes": [[["concatenate_32", 0, 0, {}]]], "name": "activation_32"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer46 | {"class_name": "Dropout", "config": {"name": "dropout_12", "noise_shape": null, "rate": 0.5, "seed": null, "trainable": false}, "inbound_nodes": [[["activation_32", 0, 0, {}]]], "name": "dropout_12"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer47 | {"class_name": "Conv2D", "config": {"activation": "linear", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 10, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_124", "padding": "valid", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["dropout_12", 0, 0, {}]]], "name": "conv2d_124"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer48 | {"class_name": "AveragePooling2D", "config": {"data_format": "channels_last", "name": "average_pooling2d_4", "padding": "same", "pool_size": [13, 13], "strides": [1, 1], "trainable": false}, "inbound_nodes": [[["conv2d_124", 0, 0, {}]]], "name": "average_pooling2d_4"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer49 | {"class_name": "Flatten", "config": {"data_format": "channels_last", "name": "flatten_8", "trainable": false}, "inbound_nodes": [[["average_pooling2d_4", 0, 0, {}]]], "name": "flatten_8"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer5 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_101", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_100", 0, 0, {}]]], "name": "conv2d_101"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer50 | {"class_name": "Dense", "config": {"activation": "softmax", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "name": "dense_16", "trainable": true, "units": 47, "use_bias": true}, "inbound_nodes": [[["flatten_8", 0, 0, {}]]], "name": "dense_16"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer6 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_102", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["conv2d_100", 0, 0, {}]]], "name": "conv2d_102"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer7 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_25", "trainable": false}, "inbound_nodes": [[["conv2d_101", 0, 0, {}], ["conv2d_102", 0, 0, {}]]], "name": "concatenate_25"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer8 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_25", "trainable": false}, "inbound_nodes": [[["concatenate_25", 0, 0, {}]]], "name": "activation_25"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer9 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 16, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_103", "padding": "same", "strides": [1, 1], "trainable": false, "use_bias": true}, "inbound_nodes": [[["activation_25", 0, 0, {}]]], "name": "conv2d_103"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_verbose | 2 |