keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPo
oling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Co
ncatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling
2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concate
nate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,C
onv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,
Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1) | Automatically created scikit-learn flow. |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_batch_size | 1024 |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_build_fn | {"oml-python:serialized_object": "function", "value": "__main__.squeezenet"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_epochs | 5 |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer0 | {"class_name": "InputLayer", "config": {"batch_input_shape": [null, 3072], "dtype": "float32", "name": "input", "sparse": false}, "inbound_nodes": [], "name": "input"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer1 | {"class_name": "Reshape", "config": {"name": "reshape_1", "target_shape": [32, 32, 3], "trainable": true}, "inbound_nodes": [[["input", 0, 0, {}]]], "name": "reshape_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer10 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_6", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_5", 0, 0, {}]]], "name": "conv2d_6"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer11 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_7", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_5", 0, 0, {}]]], "name": "conv2d_7"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer12 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_2", "trainable": true}, "inbound_nodes": [[["conv2d_6", 0, 0, {}], ["conv2d_7", 0, 0, {}]]], "name": "concatenate_2"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer13 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_2", "trainable": true}, "inbound_nodes": [[["concatenate_2", 0, 0, {}]]], "name": "activation_2"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer14 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 32, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_8", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["activation_2", 0, 0, {}]]], "name": "conv2d_8"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer15 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_9", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_8", 0, 0, {}]]], "name": "conv2d_9"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer16 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_10", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_8", 0, 0, {}]]], "name": "conv2d_10"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer17 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_3", "trainable": true}, "inbound_nodes": [[["conv2d_9", 0, 0, {}], ["conv2d_10", 0, 0, {}]]], "name": "concatenate_3"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer18 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_3", "trainable": true}, "inbound_nodes": [[["concatenate_3", 0, 0, {}]]], "name": "activation_3"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer19 | {"class_name": "MaxPooling2D", "config": {"data_format": "channels_last", "name": "max_pooling2d_2", "padding": "valid", "pool_size": [2, 2], "strides": [2, 2], "trainable": true}, "inbound_nodes": [[["activation_3", 0, 0, {}]]], "name": "max_pooling2d_2"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer2 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 96, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_1", "padding": "valid", "strides": [2, 2], "trainable": true, "use_bias": true}, "inbound_nodes": [[["reshape_1", 0, 0, {}]]], "name": "conv2d_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer20 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 32, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_11", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["max_pooling2d_2", 0, 0, {}]]], "name": "conv2d_11"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer21 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_12", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_11", 0, 0, {}]]], "name": "conv2d_12"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer22 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 128, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_13", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_11", 0, 0, {}]]], "name": "conv2d_13"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer23 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_4", "trainable": true}, "inbound_nodes": [[["conv2d_12", 0, 0, {}], ["conv2d_13", 0, 0, {}]]], "name": "concatenate_4"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer24 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_4", "trainable": true}, "inbound_nodes": [[["concatenate_4", 0, 0, {}]]], "name": "activation_4"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer25 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 48, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_14", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["activation_4", 0, 0, {}]]], "name": "conv2d_14"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer26 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_15", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_14", 0, 0, {}]]], "name": "conv2d_15"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer27 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_16", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_14", 0, 0, {}]]], "name": "conv2d_16"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer28 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_5", "trainable": true}, "inbound_nodes": [[["conv2d_15", 0, 0, {}], ["conv2d_16", 0, 0, {}]]], "name": "concatenate_5"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer29 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_5", "trainable": true}, "inbound_nodes": [[["concatenate_5", 0, 0, {}]]], "name": "activation_5"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer3 | {"class_name": "MaxPooling2D", "config": {"data_format": "channels_last", "name": "max_pooling2d_1", "padding": "valid", "pool_size": [2, 2], "strides": [2, 2], "trainable": true}, "inbound_nodes": [[["conv2d_1", 0, 0, {}]]], "name": "max_pooling2d_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer30 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 48, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_17", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["activation_5", 0, 0, {}]]], "name": "conv2d_17"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer31 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_18", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_17", 0, 0, {}]]], "name": "conv2d_18"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer32 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 192, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_19", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_17", 0, 0, {}]]], "name": "conv2d_19"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer33 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_6", "trainable": true}, "inbound_nodes": [[["conv2d_18", 0, 0, {}], ["conv2d_19", 0, 0, {}]]], "name": "concatenate_6"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer34 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_6", "trainable": true}, "inbound_nodes": [[["concatenate_6", 0, 0, {}]]], "name": "activation_6"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer35 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_20", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["activation_6", 0, 0, {}]]], "name": "conv2d_20"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer36 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_21", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_20", 0, 0, {}]]], "name": "conv2d_21"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer37 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_22", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_20", 0, 0, {}]]], "name": "conv2d_22"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer38 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_7", "trainable": true}, "inbound_nodes": [[["conv2d_21", 0, 0, {}], ["conv2d_22", 0, 0, {}]]], "name": "concatenate_7"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer39 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_7", "trainable": true}, "inbound_nodes": [[["concatenate_7", 0, 0, {}]]], "name": "activation_7"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer4 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 16, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_2", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["max_pooling2d_1", 0, 0, {}]]], "name": "conv2d_2"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer40 | {"class_name": "MaxPooling2D", "config": {"data_format": "channels_last", "name": "max_pooling2d_3", "padding": "valid", "pool_size": [2, 2], "strides": [2, 2], "trainable": true}, "inbound_nodes": [[["activation_7", 0, 0, {}]]], "name": "max_pooling2d_3"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer41 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_23", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["max_pooling2d_3", 0, 0, {}]]], "name": "conv2d_23"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer42 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_24", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_23", 0, 0, {}]]], "name": "conv2d_24"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer43 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 256, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_25", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_23", 0, 0, {}]]], "name": "conv2d_25"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer44 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_8", "trainable": true}, "inbound_nodes": [[["conv2d_24", 0, 0, {}], ["conv2d_25", 0, 0, {}]]], "name": "concatenate_8"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer45 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_8", "trainable": true}, "inbound_nodes": [[["concatenate_8", 0, 0, {}]]], "name": "activation_8"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer46 | {"class_name": "Dropout", "config": {"name": "dropout_1", "noise_shape": null, "rate": 0.5, "seed": null, "trainable": true}, "inbound_nodes": [[["activation_8", 0, 0, {}]]], "name": "dropout_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer47 | {"class_name": "Conv2D", "config": {"activation": "linear", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 10, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_26", "padding": "valid", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["dropout_1", 0, 0, {}]]], "name": "conv2d_26"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer48 | {"class_name": "AveragePooling2D", "config": {"data_format": "channels_last", "name": "average_pooling2d_1", "padding": "same", "pool_size": [13, 13], "strides": [1, 1], "trainable": true}, "inbound_nodes": [[["conv2d_26", 0, 0, {}]]], "name": "average_pooling2d_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer49 | {"class_name": "Flatten", "config": {"data_format": "channels_last", "name": "flatten_1", "trainable": true}, "inbound_nodes": [[["average_pooling2d_1", 0, 0, {}]]], "name": "flatten_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer5 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_3", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_2", 0, 0, {}]]], "name": "conv2d_3"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer50 | {"class_name": "Dense", "config": {"activation": "softmax", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "name": "dense_1", "trainable": true, "units": 10, "use_bias": true}, "inbound_nodes": [[["flatten_1", 0, 0, {}]]], "name": "dense_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer6 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 64, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [3, 3], "name": "conv2d_4", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["conv2d_2", 0, 0, {}]]], "name": "conv2d_4"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer7 | {"class_name": "Concatenate", "config": {"axis": 1, "name": "concatenate_1", "trainable": true}, "inbound_nodes": [[["conv2d_3", 0, 0, {}], ["conv2d_4", 0, 0, {}]]], "name": "concatenate_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer8 | {"class_name": "Activation", "config": {"activation": "linear", "name": "activation_1", "trainable": true}, "inbound_nodes": [[["concatenate_1", 0, 0, {}]]], "name": "activation_1"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_layer9 | {"class_name": "Conv2D", "config": {"activation": "relu", "activity_regularizer": null, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "bias_regularizer": null, "data_format": "channels_last", "dilation_rate": [1, 1], "filters": 16, "kernel_constraint": null, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "mode": "fan_avg", "scale": 1.0, "seed": null}}, "kernel_regularizer": null, "kernel_size": [1, 1], "name": "conv2d_5", "padding": "same", "strides": [1, 1], "trainable": true, "use_bias": true}, "inbound_nodes": [[["activation_1", 0, 0, {}]]], "name": "conv2d_5"} |
keras.wrappers.scikit_learn.KerasClassifier(InputLayer,Reshape,Conv2D,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Conv2D,Conv2D,Conv2D,Concatenate,Activation,MaxPooling2D,Conv2D,Conv2D,Conv2D,Concatenate,Activation,Dropout,Conv2D,AveragePooling2D,Flatten,Dense)(1)_verbose | 2 |