Run
9201795

Run 9201795

Task 125920 (Supervised Classification) dresses-sales Uploaded 28-05-2018 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalim puter=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preproce ssing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.varian ce_threshold.VarianceThreshold))(2)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(21)_categorical_features[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11]
sklearn.preprocessing.data.OneHotEncoder(21)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(21)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(21)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(21)_sparsefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(14)_threshold0.0
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_crossover_rate0.1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_cv5
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_disable_update_checkfalse
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_early_stopnull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_generations1000000
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_max_eval_time_mins5
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_max_time_mins60
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_memorynull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_mutation_rate0.9
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_n_jobs1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_offspring_size100
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_periodic_checkpoint_foldernull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_population_size100
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_random_state5490
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_refittrue
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_retry_on_errorfalse
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_scoringnull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_subsample1.0
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_verbosetrue
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_verbosity0
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(2)_warm_startfalse
sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold)(2)_memorynull
arbok.preprocessing.ConditionalImputer(8)_axis0
arbok.preprocessing.ConditionalImputer(8)_categorical_features[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11]
arbok.preprocessing.ConditionalImputer(8)_copytrue
arbok.preprocessing.ConditionalImputer(8)_fill_empty0
arbok.preprocessing.ConditionalImputer(8)_missing_values"NaN"
arbok.preprocessing.ConditionalImputer(8)_strategy"mean"
arbok.preprocessing.ConditionalImputer(8)_strategy_nominal"most_frequent"
arbok.preprocessing.ConditionalImputer(8)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.6212 ± 0.0955
Per class
Cross-validation details (10-fold Crossvalidation)
0.5879 ± 0.0581
Per class
Cross-validation details (10-fold Crossvalidation)
0.1502 ± 0.1128
Cross-validation details (10-fold Crossvalidation)
55.0103 ± 5.2346
Cross-validation details (10-fold Crossvalidation)
0.4359 ± 0.0509
Cross-validation details (10-fold Crossvalidation)
0.4873
Cross-validation details (10-fold Crossvalidation)
500
Per class
Cross-validation details (10-fold Crossvalidation)
0.5909 ± 0.055
Per class
Cross-validation details (10-fold Crossvalidation)
0.602 ± 0.0494
Cross-validation details (10-fold Crossvalidation)
0.9816
Cross-validation details (10-fold Crossvalidation)
0.602 ± 0.0494
Per class
Cross-validation details (10-fold Crossvalidation)
0.8946 ± 0.1044
Cross-validation details (10-fold Crossvalidation)
0.4936
Cross-validation details (10-fold Crossvalidation)
0.5087 ± 0.0476
Cross-validation details (10-fold Crossvalidation)
1.0306 ± 0.0964
Cross-validation details (10-fold Crossvalidation)