Run
9201746

Run 9201746

Task 3021 (Supervised Classification) sick Uploaded 25-05-2018 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalim puter=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preproce ssing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.varian ce_threshold.VarianceThreshold))(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(21)_categorical_features[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28]
sklearn.preprocessing.data.OneHotEncoder(21)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(21)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(21)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(21)_sparsefalse
arbok.preprocessing.ConditionalImputer(7)_axis0
arbok.preprocessing.ConditionalImputer(7)_categorical_features[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28]
arbok.preprocessing.ConditionalImputer(7)_copytrue
arbok.preprocessing.ConditionalImputer(7)_fill_empty0
arbok.preprocessing.ConditionalImputer(7)_missing_values"NaN"
arbok.preprocessing.ConditionalImputer(7)_strategy"mean"
arbok.preprocessing.ConditionalImputer(7)_strategy_nominal"most_frequent"
arbok.preprocessing.ConditionalImputer(7)_verbose0
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_crossover_rate0.1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_cv5
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_disable_update_checkfalse
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_early_stopnull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_generations1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_max_eval_time_mins0.1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_max_time_minsnull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_memorynull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_mutation_rate0.9
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_n_jobs1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_offspring_size5
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_periodic_checkpoint_foldernull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_population_size5
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_random_state16313
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_refittrue
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_retry_on_errorfalse
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_scoringnull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_subsample1.0
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_verbosetrue
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_verbosity2
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold))(1)_warm_startfalse
sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold)(1)_memorynull
sklearn.feature_selection.variance_threshold.VarianceThreshold(14)_threshold0.0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.9957 ± 0.0019
Per class
Cross-validation details (10-fold Crossvalidation)
0.9812 ± 0.005
Per class
Cross-validation details (10-fold Crossvalidation)
0.826 ± 0.0486
Cross-validation details (10-fold Crossvalidation)
2077.9683 ± 17.441
Cross-validation details (10-fold Crossvalidation)
0.0564 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.1152 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
3772
Per class
Cross-validation details (10-fold Crossvalidation)
0.9826 ± 0.0044
Per class
Cross-validation details (10-fold Crossvalidation)
0.9825 ± 0.0044
Cross-validation details (10-fold Crossvalidation)
0.3333
Cross-validation details (10-fold Crossvalidation)
0.9825 ± 0.0044
Per class
Cross-validation details (10-fold Crossvalidation)
0.4899 ± 0.02
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.1321 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
0.551 ± 0.0287
Cross-validation details (10-fold Crossvalidation)