Run
9201707

Run 9201707

Task 146240 (Supervised Classification) parity5 Uploaded 23-05-2018 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline (conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sk learn.preprocessing.data.OneHotEncoder))(4)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(21)_categorical_features[true, true, true, true, true]
sklearn.preprocessing.data.OneHotEncoder(21)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(21)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(21)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(21)_sparsefalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_delete_output_folder_after_terminatetrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_delete_tmp_folder_after_terminatetrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_disable_evaluator_outputfalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_ensemble_nbest50
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_ensemble_size50
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_exclude_estimatorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_exclude_preprocessorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_get_smac_object_callbacknull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_include_estimatorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_include_preprocessorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_initial_configurations_via_metalearning25
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_ml_memory_limit3072
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_output_foldernull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_per_run_time_limit20
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_refittrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_resampling_strategy"holdout"
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_resampling_strategy_argumentsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_retry_on_errortrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_seed1
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_shared_modefalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_smac_scenario_argsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_time_left_for_this_task20
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_tmp_foldernull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(4)_verbosetrue
sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder)(5)_memorynull
arbok.preprocessing.ConditionalImputer(5)_axis0
arbok.preprocessing.ConditionalImputer(5)_categorical_features[true, true, true, true, true]
arbok.preprocessing.ConditionalImputer(5)_copytrue
arbok.preprocessing.ConditionalImputer(5)_fill_emptynull
arbok.preprocessing.ConditionalImputer(5)_missing_values"NaN"
arbok.preprocessing.ConditionalImputer(5)_strategy"mean"
arbok.preprocessing.ConditionalImputer(5)_strategy_nominal"most_frequent"
arbok.preprocessing.ConditionalImputer(5)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.5313 ± 0.2415
Per class
Cross-validation details (10-fold Crossvalidation)
0.5077 ± 0.3786
Per class
Cross-validation details (10-fold Crossvalidation)
0.0625 ± 0.4771
Cross-validation details (10-fold Crossvalidation)
2 ± 1.7512
Cross-validation details (10-fold Crossvalidation)
0.4688 ± 0.2812
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
32
Per class
Cross-validation details (10-fold Crossvalidation)
0.5386 ± 0.3967
Per class
Cross-validation details (10-fold Crossvalidation)
0.5313 ± 0.2812
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.5313 ± 0.2812
Per class
Cross-validation details (10-fold Crossvalidation)
0.9375 ± 0.5625
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.6847 ± 0.3318
Cross-validation details (10-fold Crossvalidation)
1.3693 ± 0.6636
Cross-validation details (10-fold Crossvalidation)