Issue | #Downvotes for this reason | By |
---|
keras.wrappers.scikit_learn.KerasClassifier(2) | Automatically created scikit-learn flow. |
keras.wrappers.scikit_learn.KerasClassifier(2)_batch_size | 128 |
keras.wrappers.scikit_learn.KerasClassifier(2)_build_fn | "def squeezenet_cifar10():\n input_layer = Input(shape=(3072,), name=\"input\")\n reshape_layer=Reshape((32, 32,3))(input_layer)\n conv1 = Convolution2D(96, 3, 3, activation='relu', init='glorot_uniform',subsample=(2,2),border_mode='valid')(reshape_layer)\n maxpool1 = MaxPooling2D(pool_size=(2,2))(conv1)\n fire2_squeeze = Convolution2D(16, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(maxpool1)\n fire2_expand1 = Convolution2D(64, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire2_squeeze)\n fire2_expand2 = Convolution2D(64, 3, 3, activation='relu', init='glorot_uniform',border_mode='same')(fire2_squeeze)\n merge1 = merge(inputs=[fire2_expand1, fire2_expand2], mode=\"concat\", concat_axis=1)\n fire2 = Activation(\"linear\")(merge1)\n fire3_squeeze = Convolution2D(16, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire2)\n fire3_expand1 = Convolution2D(64, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire3_squeeze)\n fire3_expand2 = Convolution2D(64, 3, 3, activation='relu', init='glorot_uniform',border_mode='same')(fire3_squeeze)\n merge2 = merge(inputs=[fire3_expand1, fire3_expand2], mode=\"concat\", concat_axis=1)\n fire3 = Activation(\"linear\")(merge2)\n fire4_squeeze = Convolution2D(32, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire3)\n fire4_expand1 = Convolution2D(128, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire4_squeeze)\n fire4_expand2 = Convolution2D(128, 3, 3, activation='relu', init='glorot_uniform',border_mode='same')(fire4_squeeze)\n merge3 = merge(inputs=[fire4_expand1, fire4_expand2], mode=\"concat\", concat_axis=1)\n fire4 = Activation(\"linear\")(merge3)\n maxpool4 = MaxPooling2D((2,2))(fire4)\n fire5_squeeze = Convolution2D(32, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(maxpool4)\n fire5_expand1 = Convolution2D(128, 1, 1, activation='relu', init='glorot_uniform" |
keras.wrappers.scikit_learn.KerasClassifier(2)_epochs | 5 |
keras.wrappers.scikit_learn.KerasClassifier(2)_verbose | 1 |
0.7627 ± 0.0175 Per class Cross-validation details (10-fold Crossvalidation)
|
0.2718 ± 0.0194 Per class Cross-validation details (10-fold Crossvalidation)
|
0.2021 ± 0.0292 Cross-validation details (10-fold Crossvalidation)
|
4623.6201 ± 44.7721 Cross-validation details (10-fold Crossvalidation)
|
0.1625 ± 0.003 Cross-validation details (10-fold Crossvalidation)
|
0.18 ± 0 Cross-validation details (10-fold Crossvalidation)
|
20000 Per class Cross-validation details (10-fold Crossvalidation) |
0.2747 ± 0.0498 Per class Cross-validation details (10-fold Crossvalidation)
|
0.2821 ± 0.026 Cross-validation details (10-fold Crossvalidation)
|
3.3218 Cross-validation details (10-fold Crossvalidation)
|
0.2821 ± 0.026 Per class Cross-validation details (10-fold Crossvalidation)
|
0.9025 ± 0.0169 Cross-validation details (10-fold Crossvalidation)
|
0.3 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.2853 ± 0.0028 Cross-validation details (10-fold Crossvalidation)
|
0.9511 ± 0.0092 Cross-validation details (10-fold Crossvalidation)
|