Run
9201683

Run 9201683

Task 31 (Supervised Classification) credit-g Uploaded 21-05-2018 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline (conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sk learn.preprocessing.data.OneHotEncoder))(3)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(21)_categorical_features[true, false, true, true, false, true, true, false, true, true, false, true, false, true, true, false, true, false, true, true]
sklearn.preprocessing.data.OneHotEncoder(21)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(21)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(21)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(21)_sparsefalse
sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder)(3)_memorynull
arbok.preprocessing.ConditionalImputer(3)_axis0
arbok.preprocessing.ConditionalImputer(3)_categorical_features[true, false, true, true, false, true, true, false, true, true, false, true, false, true, true, false, true, false, true, true]
arbok.preprocessing.ConditionalImputer(3)_copytrue
arbok.preprocessing.ConditionalImputer(3)_fill_emptynull
arbok.preprocessing.ConditionalImputer(3)_missing_values"NaN"
arbok.preprocessing.ConditionalImputer(3)_strategy"mean"
arbok.preprocessing.ConditionalImputer(3)_strategy_nominal"most_frequent"
arbok.preprocessing.ConditionalImputer(3)_verbose0
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_delete_output_folder_after_terminatetrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_delete_tmp_folder_after_terminatetrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_disable_evaluator_outputfalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_ensemble_nbest50
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_ensemble_size50
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_exclude_estimatorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_exclude_preprocessorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_get_smac_object_callbacknull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_include_estimatorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_include_preprocessorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_initial_configurations_via_metalearning25
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_ml_memory_limit3072
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_output_foldernull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_per_run_time_limit360
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_refittrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_resampling_strategy"holdout"
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_resampling_strategy_argumentsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_retry_on_errorfalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_seed1
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_shared_modefalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_smac_scenario_argsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_time_left_for_this_task31
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_tmp_foldernull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(3)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.6638 ± 0.0426
Per class
Cross-validation details (10-fold Crossvalidation)
0.7406 ± 0.0342
Per class
Cross-validation details (10-fold Crossvalidation)
0.3606 ± 0.0861
Cross-validation details (10-fold Crossvalidation)
376.7197 ± 8.0886
Cross-validation details (10-fold Crossvalidation)
0.244 ± 0.0317
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.7417 ± 0.0393
Per class
Cross-validation details (10-fold Crossvalidation)
0.756 ± 0.0317
Cross-validation details (10-fold Crossvalidation)
0.8818
Cross-validation details (10-fold Crossvalidation)
0.756 ± 0.0317
Per class
Cross-validation details (10-fold Crossvalidation)
0.5807 ± 0.0754
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.494 ± 0.0317
Cross-validation details (10-fold Crossvalidation)
1.0779 ± 0.0692
Cross-validation details (10-fold Crossvalidation)